Ergodic and non-ergodic clustering of inertial particles

被引:39
|
作者
Gustavsson, K. [1 ]
Mehlig, B. [1 ]
机构
[1] Gothenburg Univ, Dept Phys, S-41296 Gothenburg, Sweden
关键词
HEAVY-PARTICLES; TURBULENCE; FLOW;
D O I
10.1209/0295-5075/96/60012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the fractal dimension of clusters of inertial particles in random flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic "centrifuge effect". In the limit of St -> 8 and Ku -> 0 (so that Ku(2)St remains finite) it explains clustering in terms of ergodic "multiplicative amplification". In this limit, the theory is consistent with the asymptotic perturbation series in MEHLIG B. et al., Phys. Rev. Lett., 92 (2004) 250602. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for St similar to 1. The ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku similar to St similar to 1, ergodic multiplicative amplification makes a substantial contribution to clustering. Copyright (C) EPLA, 2011
引用
收藏
页数:5
相关论文
共 50 条
  • [21] The Non-Ergodic Nature of Political Philosophy
    Cubeddu, Raimondo
    TEORIA-RIVISTA DI FILOSOFIA, 2014, 34 (02): : 7 - 26
  • [22] OPTIMIZING NON-ERGODIC FEEDBACK ENGINES
    Horowitz, Jordan M.
    Parrondo, Juan M. R.
    ACTA PHYSICA POLONICA B, 2013, 44 (05): : 803 - 814
  • [23] Rapid solidification as non-ergodic phenomenon
    Galenko, P. K.
    Jou, D.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 818 : 1 - 70
  • [24] ON ASYMPTOTIC EXPANSIONS IN NON-ERGODIC MODELS
    JENSEN, JL
    SCANDINAVIAN JOURNAL OF STATISTICS, 1987, 14 (04) : 305 - 318
  • [25] Ergodic to non-ergodic transition monitored by scattered light intensity statistics
    Manno, M
    Bulone, D
    Martorana, V
    San Biagio, PL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 40 - 54
  • [26] First-principles predictor of the location of ergodic/non-ergodic transitions
    Ramirez-Gonzalez, P. E.
    Juarez-Maldonado, R.
    Yeomans-Reyna, L.
    Chavez-Rojo, M. A.
    Chavez-Paez, M.
    Vizcarra-Rendon, A.
    Medina-Noyola, M.
    REVISTA MEXICANA DE FISICA, 2007, 53 (05) : 327 - 331
  • [27] Non-ergodic maps in the tangent family
    Skorulski, B
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (01): : 103 - 118
  • [28] The Non-Ergodic Nature of Internal Conversion
    Solling, Theis I.
    Kuhlman, Thomas S.
    Stephansen, Anne B.
    Klein, Liv B.
    Moller, Klaus B.
    CHEMPHYSCHEM, 2014, 15 (02) : 249 - 259
  • [29] NON-ERGODIC TRANSFORMATIONS WITH DISCRETE SPECTRUM
    CHOKSI, JR
    ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (02) : 307 - &
  • [30] Non-ergodic dynamics in supercooled liquids
    Dzugutov, M
    Simdyankin, S
    Zetterling, F
    PHASE TRANSITIONS AND SELF-ORGANIZATION IN ELECTRONIC AND MOLECULAR NETWORKS, 2001, : 111 - 122