Robust and High Spatial Resolution Light Addressable Electrochemistry Using Hematite (α-Fe2O3) Photoanodes

被引:23
|
作者
Seo, Daye [1 ]
Lim, Sung Yul [1 ,3 ]
Lee, Jihye [1 ]
Yun, Jeongse [1 ]
Chung, Taek Dong [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[2] Adv Inst Convergence Technol, Suwon 16229, Gyeonggi Do, South Korea
[3] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
electrochemical imaging; light addressable electrochemistry (LAE); photoelectrochemistry (PEC); hematite; virtual electrode; dopamine; GUIDED ELECTRODEPOSITION; HYDROGEN EVOLUTION; QUANTUM DOTS; DOPAMINE; CELLS; MICROSCOPY; BEHAVIOR; NEUROTRANSMITTERS; SEMICONDUCTORS; OXIDATION;
D O I
10.1021/acsami.8b10812
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Light addressable/activated electrochemistry (LAE) has recently attracted attention as it can provide spatially resolved electrochemical information without using pre-patterned electrodes whose sizes and positions are unchangeable. Here, we propose hematite (alpha-Fe2O3) as the photoanode for LAE, which does not require any sort of surface modification for protection or facilitating charge transfer. As experimentally confirmed with various redox species, hematite is stable enough to be used for repetitive electroanalytical measurements. More importantly, it offers exceptionally high spatial resolution so that the "virtual electrode" is exactly as large as the light spot owing to the short diffusion length of the minority carriers. Quantitative analysis of dopamine in this study shows that the hematite-based photoanode is a promising platform for many potential LAE applications including spatially selective detection of oxidizable biomolecules.
引用
收藏
页码:33662 / 33668
页数:7
相关论文
共 50 条
  • [21] Electronic Structure of Excitons in Hematite Fe2O3
    Rassouli, Lili
    Dupuis, Michel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 743 - 758
  • [22] INTERFACIAL ELECTROCHEMISTRY OF HEMATITE (ALPHA-FE2O3)
    BREEUWSMA, A
    LYKLEMA, J
    DISCUSSIONS OF THE FARADAY SOCIETY, 1971, (52): : 324 - +
  • [23] Electron hopping mechanism in hematite (α-Fe2O3)
    Papaioannou, JC
    Patermarakis, GS
    Karayianni, HS
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (05) : 839 - 844
  • [24] Local structure and spin transition in Fe2O3 hematite at high pressure
    Sanson, Andrea
    Kantor, Innokenty
    Cerantola, Valerio
    Irifune, Tetsuo
    Carnera, Alberto
    Pascarelli, Sakura
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [25] Improved Coercivity of Solvothermally Grown Hematite (α-Fe2O3) and Hematite/Graphene Oxide Nanocomposites (α-Fe2O3/GO) at Low Temperature
    Satheesh, M.
    Paloly, Abdul Rasheed
    Sagar, C. K. Krishna
    Suresh, K. G.
    Bushiri, M. Junaid
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (02):
  • [26] In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)
    Schimanke, G
    Martin, M
    SOLID STATE IONICS, 2000, 136 : 1235 - 1240
  • [27] Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3)
    Zhu, Hongyang
    Ma, Yanzhang
    Yang, Haibin
    Ji, Cheng
    Hou, Dongbin
    Guo, Lingyun
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (08) : 1183 - 1186
  • [28] Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF
    Chia, Chung-Lim
    Avendano, Carlos
    Siperstein, Flor R.
    Filip, Sorin
    LANGMUIR, 2017, 33 (42) : 11257 - 11263
  • [29] Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
    Sivula, Kevin
    Le Formal, Florian
    Graetzel, Michael
    CHEMSUSCHEM, 2011, 4 (04) : 432 - 449
  • [30] Transparent α-Fe2O3/TiO2 nanotubular photoanodes
    Zlamal, Martin
    Pausova, Sarka
    Kment, Stepan
    Hubicka, Zdenek
    Krysa, Josef
    CATALYSIS TODAY, 2017, 287 : 137 - 141