Electron hopping mechanism in hematite (α-Fe2O3)

被引:56
|
作者
Papaioannou, JC [1 ]
Patermarakis, GS
Karayianni, HS
机构
[1] Univ Athens, Dept Chem, Phys Chem Lab, GR-15771 Athens, Greece
[2] Natl Tech Univ Athens, Chem Phys Lab, Dept Mat Sci & Engn, Sch Chem Engn, Athens 15780, Greece
关键词
magnetic materials; dielectric properties;
D O I
10.1016/j.jpcs.2004.11.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The frequency dependence of the real (epsilon') and imaginary (epsilon'') parts of the dielectric constant of polycrystalline hematite (alpha-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (alpha-dispersion) in the temperature regions T < 233 K and T > 338 K. In the intermediate temperature range 233 K < T < 338 K a charge carrier mechanism takes place (electron jump from the O2- ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Omega-dispersion. The temperature dependence of relaxation time (tau) in the -ln tau vs 10(3)/T plot shows two linear regions. In the first, T < 238 K, tau increases with increasing T implying a negative activation energy -0.01 eV, and in the second region T > 318 K tau decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature T-Mo=284 +/- 1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:839 / 844
页数:6
相关论文
共 50 条
  • [1] The synthesis of maghemite and hematite (γ-Fe2O3, α-Fe2O3) nanospheres
    Dar, M. A.
    Ansari, S. G.
    Wahab, R.
    Kim, Young-Soon
    Shin, Hyung-Shik
    [J]. PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 157 - +
  • [2] THE ELECTRON-DENSITY DISTRIBUTION IN HEMATITE, ALPHA - FE2O3
    ANTIPIN, MY
    GERR, RG
    FLUGGE, MP
    TSIRELSON, VG
    STRUCHKOV, YT
    OZEROV, RP
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 : C164 - C164
  • [3] Nanopores in hematite (α-Fe2O3) nanocrystals observed by electron tomography
    Echigo, Takuya
    Monsegue, Niven
    Aruguete, Deborah M.
    Murayama, Mitsuhiro
    Hochella, Michael F., Jr.
    [J]. AMERICAN MINERALOGIST, 2013, 98 (01) : 154 - 162
  • [4] Technetium Incorporation into Hematite (α-Fe2O3)
    Skomurski, Frances N.
    Rosso, Kevin M.
    Krupka, Kenneth M.
    McGrail, B. Pete
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (15) : 5855 - 5861
  • [5] ADSORPTION OF IODATE BY HEMATITE (FE2O3)
    COUTURE, RA
    SEITZ, MG
    STEINDLER, MJ
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 32 (JUN): : 397 - 397
  • [6] Synthesis, structural, and microwave absorption properties of hematite (α-Fe2O3) and maghemite (γ-Fe2O3)
    Husain, H.
    Nurhayati, N.
    Susanto, A.
    Sujiono, E. H.
    Taryana, Y.
    Krisdayanti, K.
    [J]. PHYSICA SCRIPTA, 2023, 98 (07)
  • [7] Electronic Structure of Excitons in Hematite Fe2O3
    Rassouli, Lili
    Dupuis, Michel
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (02): : 743 - 758
  • [8] Hematite (α-Fe2O3) Photoanodes for the Photooxidation of Water
    Herrmann-Geppert, I.
    Bogdanoff, P.
    Hepperle, L.
    Fiechter, S.
    [J]. ELECTROCHEMICAL SYNTHESIS OF FUELS 1, 2012, 41 (33): : 201 - 212
  • [9] Improved Coercivity of Solvothermally Grown Hematite (α-Fe2O3) and Hematite/Graphene Oxide Nanocomposites (α-Fe2O3/GO) at Low Temperature
    Satheesh, M.
    Paloly, Abdul Rasheed
    Sagar, C. K. Krishna
    Suresh, K. G.
    Bushiri, M. Junaid
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (02):
  • [10] An ab initio model of electron transport in hematite (α-Fe2O3) basal planes
    Rosso, KM
    Smith, DMA
    Dupuis, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (14): : 6455 - 6466