Robust and High Spatial Resolution Light Addressable Electrochemistry Using Hematite (α-Fe2O3) Photoanodes

被引:23
|
作者
Seo, Daye [1 ]
Lim, Sung Yul [1 ,3 ]
Lee, Jihye [1 ]
Yun, Jeongse [1 ]
Chung, Taek Dong [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[2] Adv Inst Convergence Technol, Suwon 16229, Gyeonggi Do, South Korea
[3] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
electrochemical imaging; light addressable electrochemistry (LAE); photoelectrochemistry (PEC); hematite; virtual electrode; dopamine; GUIDED ELECTRODEPOSITION; HYDROGEN EVOLUTION; QUANTUM DOTS; DOPAMINE; CELLS; MICROSCOPY; BEHAVIOR; NEUROTRANSMITTERS; SEMICONDUCTORS; OXIDATION;
D O I
10.1021/acsami.8b10812
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Light addressable/activated electrochemistry (LAE) has recently attracted attention as it can provide spatially resolved electrochemical information without using pre-patterned electrodes whose sizes and positions are unchangeable. Here, we propose hematite (alpha-Fe2O3) as the photoanode for LAE, which does not require any sort of surface modification for protection or facilitating charge transfer. As experimentally confirmed with various redox species, hematite is stable enough to be used for repetitive electroanalytical measurements. More importantly, it offers exceptionally high spatial resolution so that the "virtual electrode" is exactly as large as the light spot owing to the short diffusion length of the minority carriers. Quantitative analysis of dopamine in this study shows that the hematite-based photoanode is a promising platform for many potential LAE applications including spatially selective detection of oxidizable biomolecules.
引用
收藏
页码:33662 / 33668
页数:7
相关论文
共 50 条
  • [31] c-In2O3/α-Fe2O3 heterojunction photoanodes for water oxidation
    Cai, Jiajia
    Li, Song
    Pan, Haijun
    Liu, Yinglei
    Qin, Gaowu
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (17) : 8148 - 8155
  • [32] c-In2O3/α-Fe2O3 heterojunction photoanodes for water oxidation
    Jiajia Cai
    Song Li
    Haijun Pan
    Yinglei Liu
    Gaowu Qin
    Journal of Materials Science, 2016, 51 : 8148 - 8155
  • [33] Cytochrome c interaction with hematite (α-Fe2O3) surfaces
    Eggleston, CM
    Khare, N
    Lovelace, DM
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2006, 150 (2-3) : 220 - 227
  • [34] Green synthesis of hematite (α-Fe2O3) submicron particles
    Gupta, R. K.
    Ghosh, K.
    Dong, L.
    Kahol, P. K.
    MATERIALS LETTERS, 2010, 64 (19) : 2132 - 2134
  • [35] Pressure dependence of Morin transition in α-Fe2O3 hematite
    Klotz, S.
    Straessle, Th
    Hansen, Th
    EPL, 2013, 104 (01)
  • [36] The effect of pressure on the Morin transition in hematite (α-Fe2O3)
    Parise, John B.
    Locke, Darren R.
    Tulk, Christopher A.
    Swainson, Ian
    Cranswick, Lachlan
    PHYSICA B-CONDENSED MATTER, 2006, 385 : 391 - 393
  • [37] Monoclinic deformation of the crystal lattice of hematite α-Fe2O3
    Przenioslo, Radoslaw
    Sosnowska, Izabela
    Stekiel, Michal
    Wardecki, Dariusz
    Fitch, Andrew
    Jasinski, Jacek B.
    PHYSICA B-CONDENSED MATTER, 2014, 449 : 72 - 76
  • [38] Design, Fabrication, and Characterization of Hematite (α-Fe2O3) Nanostructures
    Rani, B. Jansi
    Mageswari, R.
    Ravi, G.
    Ganesh, V.
    Yuvakkumar, R.
    JOM, 2017, 69 (12) : 2508 - 2514
  • [39] Fabrication of hematite (α-Fe2O3) nanoparticles usingelectrochemical deposition
    Meng, Qingling
    Wang, Zuobin
    Chai, Xiangyu
    Weng, Zhankun
    Ding, Ran
    Dong, Litong
    APPLIED SURFACE SCIENCE, 2016, 368 : 303 - 308
  • [40] Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles
    Ramesh, R.
    Sohila, S.
    Muthamizhchelvan, C.
    Rajalakshmi, M.
    Ramya, S.
    Ponnusamy, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (09) : 1357 - 1360