We use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras, to give a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras. More generally, we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.
机构:
Univ Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USAUniv Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
Beardsley, Jonathan
Peroux, Maximilien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Math, David Rittenhouse Lab, 209 South 33rd St, Philadelphia, PA 19104 USAUniv Nevada, Dept Math & Stat, 1664 N Virginia St, Reno, NV 89557 USA
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Achar, Pramod N.
Riche, Simon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Blaise Pascal, Univ Clermont Ferrand 2, Math Lab, F-63000 Clermont Ferrand, France
CNRS, UMR 6620, Math Lab, F-63177 Aubiere, FranceLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
机构:
Univ Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, FranceUniv Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
Leray, Johan
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES,
2020,
7
: 897
-
941