Iwahori-Matsumoto Involution and Linear Koszul Duality

被引:6
|
作者
Mirkovic, Ivan [1 ]
Riche, Simon [2 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] Univ Blaise Pascal Clermont Ferrand II, CNRS, UMR 6620, Campus Univ Cezeaux, F-63177 Aubiere, France
基金
美国国家科学基金会;
关键词
FOURIER-TRANSFORM;
D O I
10.1093/imrn/rnt180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras, to give a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras. More generally, we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.
引用
收藏
页码:150 / 196
页数:47
相关论文
共 50 条
  • [31] Curved Koszul duality theory
    Hirsh, Joseph
    Milles, Joan
    MATHEMATISCHE ANNALEN, 2012, 354 (04) : 1465 - 1520
  • [32] Curved Koszul duality theory
    Joseph Hirsh
    Joan Millès
    Mathematische Annalen, 2012, 354 : 1465 - 1520
  • [33] Koszul duality in algebraic topology
    Sinha, Dev P.
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2013, 8 (01) : 1 - 12
  • [34] Koszul duality for toric varieties
    Braden, Tom
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) : 385 - 415
  • [35] Poincare Duality for Koszul Algebras
    Dubois-Violette, Michel
    ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 3 - 26
  • [36] KOSZUL DUALITY IN HIGHER TOPOI
    Beardsley, Jonathan
    Peroux, Maximilien
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2023, 25 (01) : 53 - 70
  • [37] Koszul duality for Lie algebroids
    Nuiten, Joost
    ADVANCES IN MATHEMATICS, 2019, 354
  • [38] KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS
    Achar, Pramod N.
    Riche, Simon
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (04) : 1511 - 1612
  • [39] PROTOPERADS II: KOSZUL DUALITY
    Leray, Johan
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2020, 7 : 897 - 941
  • [40] Koszul duality and equivariant cohomology
    Franz, Matthias
    DOCUMENTA MATHEMATICA, 2006, 11 : 243 - 259