PROTOPERADS II: KOSZUL DUALITY

被引:1
|
作者
Leray, Johan [1 ]
机构
[1] Univ Paris 13, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
关键词
Properad; protoperad; Koszul duality; double Poisson; REPRESENTATION SCHEMES; DEFORMATION-THEORY; COHOMOLOGY; ALGEBRAS;
D O I
10.5802/jep.131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a bar-cobar adjunction and a Koszul duality theory for protoperads, which are an operadic type notion encoding faithfully some categories of gebras with diagonal symmetries, like double Lie algebras (DLie). We give a criterion to show that a binary quadratic protoperad is Koszul and we apply it successfully to the protoperad DLie. As a corollary, we deduce that the properad DPois which encodes double Poisson algebras is Koszul. This allows us to describe the homotopy properties of double Poisson algebras which play a key role in non commutative geometry.
引用
收藏
页码:897 / 941
页数:45
相关论文
共 50 条
  • [1] Gale duality and Koszul duality
    Braden, Tom
    Licata, Anthony
    Proudfoot, Nicholas
    Webster, Ben
    ADVANCES IN MATHEMATICS, 2010, 225 (04) : 2002 - 2049
  • [2] Generalized Koszul algebra and Koszul duality
    Li, Haonan
    Wu, Quanshui
    JOURNAL OF ALGEBRA, 2023, 619 : 643 - 685
  • [3] Ringel duality as an instance of Koszul duality
    Bodzenta, Agnieszka
    Kuelshammer, Julian
    JOURNAL OF ALGEBRA, 2018, 506 : 129 - 187
  • [4] From Koszul duality to Poincaré duality
    MICHEL DUBOIS-VIOLETTE
    Pramana, 2012, 78 : 947 - 961
  • [5] From Koszul duality to Poincare duality
    Dubois-Violette, Michel
    PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (06): : 947 - 961
  • [6] Poincaré/Koszul Duality
    David Ayala
    John Francis
    Communications in Mathematical Physics, 2019, 365 : 847 - 933
  • [7] Chiral Koszul duality
    Francis, John
    Gaitsgory, Dennis
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (01): : 27 - 87
  • [8] Modular Koszul duality
    Riche, Simon
    Soergel, Wolfgang
    Williamson, Geordie
    COMPOSITIO MATHEMATICA, 2014, 150 (02) : 273 - 332
  • [9] Chiral Koszul duality
    John Francis
    Dennis Gaitsgory
    Selecta Mathematica, 2012, 18 : 27 - 87
  • [10] Linear Koszul duality
    Mirkovic, Ivan
    Riche, Simon
    COMPOSITIO MATHEMATICA, 2010, 146 (01) : 233 - 258