Ringel duality as an instance of Koszul duality

被引:4
|
作者
Bodzenta, Agnieszka [1 ]
Kuelshammer, Julian [2 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Bocs; Coring; Exceptional collection; Quasi-hereditary algebra; Koszul duality; Smooth rational surface; QUASI-HEREDITARY ALGEBRAS; CATEGORY; SURFACES; MODULES;
D O I
10.1016/j.jalgebra.2018.03.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [30], S. Koenig, S. Ovsienko and the second author showed that every quasi-hereditary algebra is Morita equivalent to the right algebra, i.e. the opposite algebra of the left dual, of a coring. Let A be an associative algebra and V an A-coring whose right algebra R is quasi-hereditary. In this paper, we give a combinatorial description of an associative algebra B and a B-coring W whose right algebra is the Ringel dual of R. We apply our results in small examples to obtain restrictions on the A(infinity)-structure of the Ext-algebra of standard modules over a class of quasi-hereditary algebras related to birational morphisms of smooth surfaces. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 187
页数:59
相关论文
共 50 条
  • [1] Koszul, Ringel and Serre duality for strict polynomial functors
    Krause, Henning
    COMPOSITIO MATHEMATICA, 2013, 149 (06) : 996 - 1018
  • [2] Gale duality and Koszul duality
    Braden, Tom
    Licata, Anthony
    Proudfoot, Nicholas
    Webster, Ben
    ADVANCES IN MATHEMATICS, 2010, 225 (04) : 2002 - 2049
  • [3] From Koszul duality to Poincaré duality
    MICHEL DUBOIS-VIOLETTE
    Pramana, 2012, 78 : 947 - 961
  • [4] From Koszul duality to Poincare duality
    Dubois-Violette, Michel
    PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (06): : 947 - 961
  • [5] Poincaré/Koszul Duality
    David Ayala
    John Francis
    Communications in Mathematical Physics, 2019, 365 : 847 - 933
  • [6] Chiral Koszul duality
    Francis, John
    Gaitsgory, Dennis
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (01): : 27 - 87
  • [7] Enriched Koszul duality
    Eurenius, Bjorn
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2024, 19 (03) : 397 - 429
  • [8] Categorical Koszul duality
    Holstein, J.
    Lazarev, A.
    ADVANCES IN MATHEMATICS, 2022, 409
  • [9] A koszul duality for props
    Vallette, Bruno
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (10) : 4865 - 4943
  • [10] Modular Koszul duality
    Riche, Simon
    Soergel, Wolfgang
    Williamson, Geordie
    COMPOSITIO MATHEMATICA, 2014, 150 (02) : 273 - 332