Iwahori-Matsumoto Involution and Linear Koszul Duality

被引:6
|
作者
Mirkovic, Ivan [1 ]
Riche, Simon [2 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] Univ Blaise Pascal Clermont Ferrand II, CNRS, UMR 6620, Campus Univ Cezeaux, F-63177 Aubiere, France
基金
美国国家科学基金会;
关键词
FOURIER-TRANSFORM;
D O I
10.1093/imrn/rnt180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras, to give a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras. More generally, we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.
引用
收藏
页码:150 / 196
页数:47
相关论文
共 50 条
  • [1] ON THE IWAHORI-MATSUMOTO INVOLUTION AND APPLICATIONS
    JANTZEN, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1995, 28 (05): : 527 - 547
  • [2] Fourier transform and the Iwahori-Matsumoto involution
    Evens, S
    Mirkovic, I
    DUKE MATHEMATICAL JOURNAL, 1997, 86 (03) : 435 - 464
  • [3] Formulae relating the Bernstein and Iwahori-Matsumoto presentations of an affine Hecke algebra
    Haines, TJ
    Pettet, A
    JOURNAL OF ALGEBRA, 2002, 252 (01) : 127 - 149
  • [4] Linear Koszul duality
    Mirkovic, Ivan
    Riche, Simon
    COMPOSITIO MATHEMATICA, 2010, 146 (01) : 233 - 258
  • [5] LINEAR KOSZUL DUALITY AND FOURIER TRANSFORM FOR CONVOLUTION ALGEBRAS
    Mirkovic, Ivan
    Riche, Simon
    DOCUMENTA MATHEMATICA, 2015, 20 : 989 - 1038
  • [6] Cartan-Iwahori-Matsumoto decompositions for reductive groups
    Alper, Jarod
    Heinloth, Jochen
    Halpern-Leistner, Daniel
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (02) : 593 - 604
  • [7] Gale duality and Koszul duality
    Braden, Tom
    Licata, Anthony
    Proudfoot, Nicholas
    Webster, Ben
    ADVANCES IN MATHEMATICS, 2010, 225 (04) : 2002 - 2049
  • [8] Generalized Koszul algebra and Koszul duality
    Li, Haonan
    Wu, Quanshui
    JOURNAL OF ALGEBRA, 2023, 619 : 643 - 685
  • [9] Linear Koszul duality, II: coherent sheaves on perfect sheaves
    Mirkovic, I.
    Riche, S.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 93 : 1 - 24
  • [10] Ringel duality as an instance of Koszul duality
    Bodzenta, Agnieszka
    Kuelshammer, Julian
    JOURNAL OF ALGEBRA, 2018, 506 : 129 - 187