Linewidth roughness in nanowire-mask-based graphene nanoribbons

被引:12
|
作者
Xu, Guangyu [1 ]
Torres, Carlos M., Jr. [1 ]
Bai, Jingwei [2 ]
Tang, Jianshi [1 ]
Yu, Tao [3 ]
Huang, Yu [2 ]
Duan, Xiangfeng [4 ]
Zhang, Yuegang [5 ]
Wang, Kang L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Peking Univ, Inst Microelect, Beijing 100871, Peoples R China
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
LINE-EDGE ROUGHNESS; TRANSISTORS; MOSFETS;
D O I
10.1063/1.3599596
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present the analysis of linewidth roughness (LWR) in nanowire-mask-based graphene nanoribbons (GNRs) and evaluate its impact on the device performance. The data show that the LWR amplitude decreases with the GNR width, possibly due to the etching undercut near the edge of a nanowire-mask. We further discuss the large variation in GNR devices in the presence of LWR by analyzing the measured transport properties and on/off ratios. (C) 2011 American Institute of Physics. [doi:10.1063/1.3599596]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Electronic properties of graphene nanoribbons with line-edge roughness doped with nitrogen and boron
    Wong, Kien Liong
    Chuan, Mu Wen
    Hamzah, Afiq
    Rusli, Shahrizal
    Alias, Nurul Ezaila
    Sultan, Suhana Mohamed
    Lim, Cheng Siong
    Tan, Michael Loong Peng
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 117 (117):
  • [22] Modeling of the photodetector based on the multilayer graphene nanoribbons
    Liu, Haiyue
    Niu, Yanxiong
    Yin, Yiheng
    Liu, Shuai
    AIP ADVANCES, 2016, 6 (07):
  • [23] Graphene-Based Nanowire Supercapacitors
    Chen, Zhi
    Yu, Dingshan
    Xiong, Wei
    Liu, Peipei
    Liu, Yong
    Dai, Liming
    LANGMUIR, 2014, 30 (12) : 3567 - 3571
  • [24] Pseudopotential-based studies of electron transport in graphene and graphene nanoribbons
    Fischetti, Massimo V.
    Kim, Jiseok
    Narayanan, Sudarshan
    Ong, Zhun-Yong
    Sachs, Catherine
    Ferry, David K.
    Aboud, Shela J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (47)
  • [25] Electronic transport properties of nanoribbons of graphene and ψ-graphene -based lactate nanobiosensor
    Khatir, Nadia Mahmoudi
    Ahmadi, Aidin
    Taghizade, Narges
    Khameneh, Samane Motevali
    Faghihnasiri, Mahdi
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 145
  • [26] Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors
    Krepel, Dana
    Peralta, Juan E.
    Scuseria, Gustavo E.
    Hod, Oded
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (07): : 3791 - 3797
  • [27] Bandpass filter based on comb shaped graphene nanoribbons
    Deng, Guangsheng
    Zhao, Tianxiang
    Yin, Zhiping
    Yang, Jun
    OSA CONTINUUM, 2019, 2 (09) : 2614 - 2622
  • [28] Transport of quasiparticles in coronene-based graphene nanoribbons
    Pereira Junior, Marcelo Lopes
    Enders Neto, Bernhard Georg
    Giozza, William Ferreira
    Sousa Junior, Rafael Timoteo
    Magela e Silva, Geraldo
    Ribeiro Junior, Luiz Antonio
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (35) : 12100 - 12107
  • [29] Superlattice structures of graphene-based armchair nanoribbons
    Sevincli, H.
    Topsakal, M.
    Ciraci, S.
    PHYSICAL REVIEW B, 2008, 78 (24)
  • [30] Thermal conductance modulator based on folded graphene nanoribbons
    Ouyang, Tao
    Chen, Yuanping
    Xie, Yuee
    Stocks, G. M.
    Zhong, Jianxin
    APPLIED PHYSICS LETTERS, 2011, 99 (23)