Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors

被引:9
|
作者
Krepel, Dana [1 ,6 ]
Peralta, Juan E. [3 ]
Scuseria, Gustavo E. [4 ,5 ]
Hod, Oded [1 ,2 ]
机构
[1] Tel Aviv Univ, Sch Chem, Dept Phys Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-6997801 Tel Aviv, Israel
[3] Cent Michigan Univ, Dept Phys & Sci Adv Mat, Mt Pleasant, MI 48859 USA
[4] Rice Univ, Dept Chem, POB 1892, Houston, TX 77251 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA
[6] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 07期
基金
美国国家科学基金会; 以色列科学基金会;
关键词
FUNDAMENTAL PROPERTIES; CARBON NANOTUBES; ADSORPTION; CONSTITUTION; LIQUIDS; SYSTEMS; SOLIDS;
D O I
10.1021/acs.jpcc.5b11133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A computational study demonstrating the potential application of armchair graphene nanoribbons as ultrasensitive chemical detectors is presented. To this end, we propose the use of lithium adatoms, serving as surface anchoring sites, to allow for aromatic contaminant chemisorption that alters the all-carbon substrate electronic properties. The corresponding variations in the electronic transport characteristics, which are evaluated using a divide and conquer approach based on density functional theory, suggest device sensitivities as low as 10(-5)-10(-9) ppbv. The microscopic understanding of the contaminant adsorption process and its influence on the electronic and transport properties of graphene nanoribbons gained in this study may assist in the rational design of ultrasensitive chemical detectors based on low-dimensional graphene derivatives.
引用
收藏
页码:3791 / 3797
页数:7
相关论文
共 50 条
  • [1] GRAPHENE NANORIBBONS Chemical stitching
    Wang, Xinran
    NATURE NANOTECHNOLOGY, 2014, 9 (11) : 875 - 876
  • [2] Chemical Functionalization of Graphene Nanoribbons
    Gorjizadeh, Narjes
    Kawazoe, Yoshiyuki
    JOURNAL OF NANOMATERIALS, 2010, 2010
  • [3] Chemical synthesis of graphene nanoribbons
    Pefkianakis, Eleftherios K.
    Sakellariou, Georgios
    Vougioukalakis, Georgios C.
    ARKIVOC, 2015, : 167 - 192
  • [4] Rectification effects of C3N nanoribbons-based Schottky junctions
    Xia, Congxin
    Fang, Lizhen
    Xiong, Wenqi
    Wang, Tianxing
    Wei, Shuyi
    Jia, Yu
    CARBON, 2019, 141 : 363 - 369
  • [5] Single chemical bond to graphene nanoribbons
    Donaldson, Laurie
    MATERIALS TODAY, 2013, 16 (09) : 306 - 307
  • [6] Gas Permeation through V2O5 Nanoribbons-Based Membrane
    Chevrier, Sarah M.
    Goh, Kunli
    Chuah, Chong Yang
    Gabriel, Jean-Christophe P.
    ADVANCED MATERIALS INTERFACES, 2024, 11 (31):
  • [7] Ultrasensitive graphene far-infrared power detectors
    McKitterick, C. B.
    Prober, D. E.
    Vora, H.
    Du, X.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (16)
  • [8] From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis
    Chen, Long
    Hernandez, Yenny
    Feng, Xinliang
    Muellen, Klaus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (31) : 7640 - 7654
  • [9] Chemical Methods for the Generation of Graphenes and Graphene Nanoribbons
    Englert, Jan M.
    Hirsch, Andreas
    Feng, Xinliang
    Muellen, Klaus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) : A17 - A24
  • [10] Microfluidic electrolyte-gated TiS3 nanoribbons-based field-effect transistor as ultrasensitive label-free immunosensor for prostate cancer marker analysis
    Majd, Samira Mansouri
    Salimi, Abdollah
    SENSING AND BIO-SENSING RESEARCH, 2024, 43