Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors

被引:9
|
作者
Krepel, Dana [1 ,6 ]
Peralta, Juan E. [3 ]
Scuseria, Gustavo E. [4 ,5 ]
Hod, Oded [1 ,2 ]
机构
[1] Tel Aviv Univ, Sch Chem, Dept Phys Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-6997801 Tel Aviv, Israel
[3] Cent Michigan Univ, Dept Phys & Sci Adv Mat, Mt Pleasant, MI 48859 USA
[4] Rice Univ, Dept Chem, POB 1892, Houston, TX 77251 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA
[6] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 07期
基金
美国国家科学基金会; 以色列科学基金会;
关键词
FUNDAMENTAL PROPERTIES; CARBON NANOTUBES; ADSORPTION; CONSTITUTION; LIQUIDS; SYSTEMS; SOLIDS;
D O I
10.1021/acs.jpcc.5b11133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A computational study demonstrating the potential application of armchair graphene nanoribbons as ultrasensitive chemical detectors is presented. To this end, we propose the use of lithium adatoms, serving as surface anchoring sites, to allow for aromatic contaminant chemisorption that alters the all-carbon substrate electronic properties. The corresponding variations in the electronic transport characteristics, which are evaluated using a divide and conquer approach based on density functional theory, suggest device sensitivities as low as 10(-5)-10(-9) ppbv. The microscopic understanding of the contaminant adsorption process and its influence on the electronic and transport properties of graphene nanoribbons gained in this study may assist in the rational design of ultrasensitive chemical detectors based on low-dimensional graphene derivatives.
引用
收藏
页码:3791 / 3797
页数:7
相关论文
共 50 条
  • [31] Graphene-Based Neutron Detectors
    Foxe, Michael
    Cazalas, E.
    Lamm, H.
    Majcher, A.
    Piotrowski, C.
    Childres, Isaac
    Patil, Amol
    Chen, Yong P.
    Jovanovic, Igor
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 352 - 355
  • [32] Bandpass filter based on comb shaped graphene nanoribbons
    Deng, Guangsheng
    Zhao, Tianxiang
    Yin, Zhiping
    Yang, Jun
    OSA CONTINUUM, 2019, 2 (09) : 2614 - 2622
  • [33] Transport of quasiparticles in coronene-based graphene nanoribbons
    Pereira Junior, Marcelo Lopes
    Enders Neto, Bernhard Georg
    Giozza, William Ferreira
    Sousa Junior, Rafael Timoteo
    Magela e Silva, Geraldo
    Ribeiro Junior, Luiz Antonio
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (35) : 12100 - 12107
  • [34] Superlattice structures of graphene-based armchair nanoribbons
    Sevincli, H.
    Topsakal, M.
    Ciraci, S.
    PHYSICAL REVIEW B, 2008, 78 (24)
  • [35] Thermal conductance modulator based on folded graphene nanoribbons
    Ouyang, Tao
    Chen, Yuanping
    Xie, Yuee
    Stocks, G. M.
    Zhong, Jianxin
    APPLIED PHYSICS LETTERS, 2011, 99 (23)
  • [36] Carbon-based nanomaterials as contacts to graphene nanoribbons
    Ouyang, Yijian
    Guo, Jing
    APPLIED PHYSICS LETTERS, 2010, 97 (26)
  • [37] Local strain in tunneling transistors based on graphene nanoribbons
    Lu, Yang
    Guo, Jing
    APPLIED PHYSICS LETTERS, 2010, 97 (07)
  • [38] Metallic Graphene Nanoribbons
    Sheng-Yi Xie
    Xian-Bin Li
    Nano-Micro Letters, 2021, 13 (03) : 200 - 202
  • [39] Metallic Graphene Nanoribbons
    Xie, Sheng-Yi
    Li, Xian-Bin
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [40] Orbital magnetization of graphene and graphene nanoribbons
    Liu, Junfeng
    Ma, Zhongshui
    Wright, A. R.
    Zhang, Chao
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (10)