On 3D MHD equations with regularity in one directional derivative of the velocity

被引:1
|
作者
Liu, Qiao [1 ]
机构
[1] Hunan Normal Univ, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
3D MHD equations; Regularity criterion; Anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; MAGNETOHYDRODYNAMICS EQUATIONS; GLOBAL REGULARITY; WELL-POSEDNESS; CRITERIA; HYDRODYNAMICS; SINGULARITIES; INEQUALITIES; VORTICITY;
D O I
10.1016/j.camwa.2018.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work establishes a new regularity criterion for the 3D incompressible magneto hydrodynamical (MHD) equations in terms of one directional derivative of the velocity (i.e., partial derivative(3)u) on framework of the anisotropic Lebesgue spaces. More precisely, it is proved that if partial derivative(3)u satisfies integral(T)(0) parallel to vertical bar vertical bar partial derivative(3)u(tau)vertical bar vertical bar L-x3(alpha)parallel to L-x1x2(beta q) d tau < +infinity, where 2/q + 1/alpha + 2/beta = k is an element of [1, 3/2] and 3/k < alpha <= beta <= 1/k-1, for some T > 0, then the corresponding solution (u, b) to the 3D MHD equations is regular on (0, T) x R-3. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2375 / 2383
页数:9
相关论文
共 50 条