Regularity criteria via one directional derivative of the velocity in anisotropic Lebesgue spaces to the 3D Navier-Stokes equations

被引:8
|
作者
Ragusa, Maria Alessandra [1 ,2 ]
Wu, Fan [3 ]
机构
[1] Univ Catania, Dept Math, Viale Andrea Doria 6, I-95128 Catania, Italy
[2] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
[3] Hunan Normal Univ, Sch Math & Stat, Changsha 410081, Hunan, Peoples R China
关键词
Navier-Stokes equations; Regularity criteria; Anisotropic Lebesgue spaces; WEAK SOLUTIONS; TERMS;
D O I
10.1016/j.jmaa.2021.125286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the regularity criterion for 3D incompressible Navier-Stokes equations in terms of one directional derivative of the velocity in anisotropic Lebesgue spaces. More precisely, it is proved that u becomes a regular solution if the partial derivative(3)u satisfies integral(T)(0) parallel to parallel to parallel to partial derivative(3)u(t)parallel to(Lx1p)parallel to(Lx2q)parallel to(beta)(Lx3r)/1+ln (parallel to partial derivative(3)u (t) parallel to (L2) +e) dt < infinity, where 2/beta + 1/p + 1/q + 1/r = 1 and 2 < p, q, r <= infinity, 1 - (1/p+ 1/q+ 1/r) >= 0. (C) 2021 Published by Elsevier Inc.
引用
收藏
页数:7
相关论文
共 50 条