Regularity via one vorticity component for the 3D axisymmetric MHD equations

被引:0
|
作者
Guo, Zhengguang [1 ]
Chen, Fangru [2 ]
机构
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou, Zhejiang, Peoples R China
关键词
axisymmetric solutions; Besov space; MHD equations; regularity criteria; NAVIER-STOKES EQUATIONS; AXIALLY-SYMMETRIC FLOWS; WEAK SOLUTIONS; ONE VELOCITY; GLOBAL REGULARITY; CRITERIA; SYSTEM; INEQUALITIES; TERMS;
D O I
10.1002/mana.202000419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the regularity criteria of axisymmetric weak solutions to the three-dimensional (3D) incompressible magnetohydrodynamics (MHD) equations with nonzero swirl component. By making use of techniques of the Littlewood-Paley decomposition, we show that weak solutions to the 3D axisymmetric MHD equations become regular if the swirl component of vorticity satisfies that w theta e theta is an element of L1(0,T;B?infinity,infinity 0)$w_{\theta }e_{\theta }\in L<^>{1}\big (0,T;\dot{B}_{\infty ,\infty }<^>{0}\big )$, which partially gives a positive answer to the marginal case for the regularity of MHD equations.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 50 条