Regularity via one vorticity component for the 3D axisymmetric MHD equations

被引:0
|
作者
Guo, Zhengguang [1 ]
Chen, Fangru [2 ]
机构
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou, Zhejiang, Peoples R China
关键词
axisymmetric solutions; Besov space; MHD equations; regularity criteria; NAVIER-STOKES EQUATIONS; AXIALLY-SYMMETRIC FLOWS; WEAK SOLUTIONS; ONE VELOCITY; GLOBAL REGULARITY; CRITERIA; SYSTEM; INEQUALITIES; TERMS;
D O I
10.1002/mana.202000419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the regularity criteria of axisymmetric weak solutions to the three-dimensional (3D) incompressible magnetohydrodynamics (MHD) equations with nonzero swirl component. By making use of techniques of the Littlewood-Paley decomposition, we show that weak solutions to the 3D axisymmetric MHD equations become regular if the swirl component of vorticity satisfies that w theta e theta is an element of L1(0,T;B?infinity,infinity 0)$w_{\theta }e_{\theta }\in L<^>{1}\big (0,T;\dot{B}_{\infty ,\infty }<^>{0}\big )$, which partially gives a positive answer to the marginal case for the regularity of MHD equations.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 50 条
  • [41] Remarks on the global regularity criteria for the 3D MHD equations via two components
    Zujin Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 977 - 987
  • [42] Remarks on the global regularity criteria for the 3D MHD equations via two components
    Zhang, Zujin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 977 - 987
  • [43] REGULARITY OF 3D AXISYMMETRIC NAVIER-STOKES EQUATIONS
    Chen, Hui
    Fang, Daoyuan
    Zhang, Ting
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) : 1923 - 1939
  • [44] Regularity criteria for 3D Hall-MHD equations
    Jia, Xuanji
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [45] Remark on an improved regularity criterion for the 3D MHD equations
    Xu, Xiaojing
    Ye, Zhuan
    Zhang, Zujin
    APPLIED MATHEMATICS LETTERS, 2015, 42 : 41 - 46
  • [46] Regularity criteria for the 3D MHD equations in term of velocity
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-an
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2506 - 2516
  • [47] Regularity criteria for the 3D MHD equations in terms of the pressure
    Zhou, Yong
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (10) : 1174 - 1180
  • [48] On the regularity criterion of weak solutions for the 3D MHD equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [49] Regularity results for weak solutions of the 3D MHD equations
    Wu, JH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (1-2) : 543 - 556
  • [50] ON THE GEVREY REGULARITY OF SOLUTIONS TO THE 3D IDEAL MHD EQUATIONS
    Cheng, Feng
    Xu, Chao-Jiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6485 - 6506