Regularity via one vorticity component for the 3D axisymmetric MHD equations
被引:0
|
作者:
Guo, Zhengguang
论文数: 0引用数: 0
h-index: 0
机构:
Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
Guo, Zhengguang
[1
]
Chen, Fangru
论文数: 0引用数: 0
h-index: 0
机构:
Wenzhou Univ, Dept Math, Wenzhou, Zhejiang, Peoples R ChinaHuaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
Chen, Fangru
[2
]
机构:
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou, Zhejiang, Peoples R China
In this paper, we investigate the regularity criteria of axisymmetric weak solutions to the three-dimensional (3D) incompressible magnetohydrodynamics (MHD) equations with nonzero swirl component. By making use of techniques of the Littlewood-Paley decomposition, we show that weak solutions to the 3D axisymmetric MHD equations become regular if the swirl component of vorticity satisfies that w theta e theta is an element of L1(0,T;B?infinity,infinity 0)$w_{\theta }e_{\theta }\in L<^>{1}\big (0,T;\dot{B}_{\infty ,\infty }<^>{0}\big )$, which partially gives a positive answer to the marginal case for the regularity of MHD equations.
机构:
Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
机构:
City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
Jia, Xuanji
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi ArabiaCity Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China