On planar polynomial geometric interpolation

被引:0
|
作者
Kozak, Jernej [1 ]
机构
[1] IMFM, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Polynomial curve; Geometric interpolation; Existence; Approximation order; HERMITE INTERPOLATION;
D O I
10.1016/j.jat.2022.105806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is based precisely on the known data only, one may consider it as the parametric counterpart to the polynomial function interpolation. The established result confirms the H??llig???Koch conjecture on the existence and the approximation order in the planar case for parametric polynomial curves of any degree stated quite a while ago. ?? 2022 Published by Elsevier Inc.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A New Method for Polynomial Interpolation
    Majdodin, Rooholah
    Farhadi, Hamidreza
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 19, 2007, 19 : 298 - 299
  • [42] Subdivision invariant polynomial interpolation
    Hahmann, S
    Bonneau, GP
    Yvart, A
    VISUALIZATION AND MATHEMATICS III, 2003, : 189 - 200
  • [43] Note on Equidistant Polynomial Interpolation
    Shang, Gao
    qiang, Qian
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, COMPUTER AND SOCIETY, 2016, 37 : 2059 - 2062
  • [44] Multivariate polynomial interpolation - Preface
    Gasca, M
    Sauer, T
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) : U3 - +
  • [45] LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION
    BRUTMAN, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 694 - 704
  • [46] A formula of polynomial interpolation.
    Simon, WG
    ANNALS OF MATHEMATICS, 1917, 19 : 242 - 245
  • [47] ON THE ERROR IN MULTIVARIATE POLYNOMIAL INTERPOLATION
    DEBOOR, C
    APPLIED NUMERICAL MATHEMATICS, 1992, 10 (3-4) : 297 - 305
  • [48] LACUNARY POLYNOMIAL SPLINE INTERPOLATION
    DEMKO, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A160 - A160
  • [49] On the history of multivariate polynomial interpolation
    Gasca, M
    Sauer, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) : 23 - 35
  • [50] Quartic and Quintic Polynomial Interpolation
    Hiang, Tan Saw
    Ali, Jamaludin Md.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 664 - 675