On planar polynomial geometric interpolation

被引:0
|
作者
Kozak, Jernej [1 ]
机构
[1] IMFM, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Polynomial curve; Geometric interpolation; Existence; Approximation order; HERMITE INTERPOLATION;
D O I
10.1016/j.jat.2022.105806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is based precisely on the known data only, one may consider it as the parametric counterpart to the polynomial function interpolation. The established result confirms the H??llig???Koch conjecture on the existence and the approximation order in the planar case for parametric polynomial curves of any degree stated quite a while ago. ?? 2022 Published by Elsevier Inc.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] ERROR IN POLYNOMIAL INTERPOLATION
    BAKER, CTH
    NUMERISCHE MATHEMATIK, 1970, 15 (04) : 315 - &
  • [22] On interpolation of polynomial operators
    Khlobystov, VV
    Kashpur, EF
    CYBERNETICS AND SYSTEMS ANALYSIS, 1996, 32 (03) : 398 - 403
  • [24] PIECEWISE POLYNOMIAL INTERPOLATION
    DUBOVIK, VP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (03): : 207 - 209
  • [25] On harmonic polynomial interpolation
    Zahariuta, V.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS III, 2008, 455 : 439 - 453
  • [26] Fractal polynomial interpolation
    Navascués, MA
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 401 - 418
  • [27] A representation of the interpolation polynomial
    Ivan, Mircea
    Neagos, Vicuta
    NUMERICAL ALGORITHMS, 2021, 88 (03) : 1215 - 1231
  • [28] A representation of the interpolation polynomial
    Mircea Ivan
    Vicuta Neagos
    Numerical Algorithms, 2021, 88 : 1215 - 1231
  • [29] On the divergence of polynomial interpolation
    Jorba, A
    Tatjer, JC
    JOURNAL OF APPROXIMATION THEORY, 2003, 120 (01) : 85 - 110
  • [30] On the Hermite interpolation polynomial
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (01): : 104 - 109