On planar polynomial geometric interpolation

被引:0
|
作者
Kozak, Jernej [1 ]
机构
[1] IMFM, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Polynomial curve; Geometric interpolation; Existence; Approximation order; HERMITE INTERPOLATION;
D O I
10.1016/j.jat.2022.105806
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is based precisely on the known data only, one may consider it as the parametric counterpart to the polynomial function interpolation. The established result confirms the H??llig???Koch conjecture on the existence and the approximation order in the planar case for parametric polynomial curves of any degree stated quite a while ago. ?? 2022 Published by Elsevier Inc.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] On partial polynomial interpolation
    Brambilla, Maria Chiara
    Ottaviani, Giorgio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1415 - 1445
  • [32] On the trivariate polynomial interpolation
    Safak, Suleyman
    WSEAS Transactions on Mathematics, 2012, 11 (08) : 738 - 746
  • [33] ON MULTIVARIATE POLYNOMIAL INTERPOLATION
    DEBOOR, C
    RON, A
    CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) : 287 - 302
  • [34] Interpolation with the polynomial kernels
    Elefante, Giacomo
    Erb, Wolfgang
    Marchetti, Francesco
    Perracchione, Emma
    Poggiali, Davide
    Santin, Gabriele
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 45 - 60
  • [35] Polynomial interpolation of operators
    Makarov V.L.
    Khlobystov V.V.
    Journal of Mathematical Sciences, 1997, 84 (4) : 1244 - 1290
  • [36] Planar C2 cubic spline interpolation under geometric boundary conditions
    Ginnis, AI
    Kaklis, PD
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (05) : 345 - 363
  • [37] GEOMETRIC CONDITIONS FOR INTERPOLATION
    BELNA, CL
    OBAID, SA
    RUNG, DC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 469 - 475
  • [38] Interpolation by geometric algorithm
    Maekawa, Takashi
    Matsumoto, Yasunori
    Namiki, Ken
    COMPUTER-AIDED DESIGN, 2007, 39 (04) : 313 - 323
  • [39] GEOMETRIC HERMITE INTERPOLATION
    HOLLIG, K
    KOCH, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (06) : 567 - 580
  • [40] Polynomial interpolation over quaternions
    Bolotnikov, Vladimir
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 567 - 590