A matrix approach for the semiclassical and coherent orthogonal polynomials

被引:8
|
作者
Garza, Lino G. [1 ]
Garza, Luis E. [2 ]
Marcellan, Francisco [1 ,3 ]
Pinzon-Cortes, Natalia C. [4 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Colima, Fac Ciencias, Colima 28045, Mexico
[3] Inst Ciencias Matemat ICMAT, Uam, Spain
[4] Univ Nacl Colombia, Fac Ciencias, Dept Matemat, Bogota 404310, Colombia
关键词
Semiclassical orthogonal polynomials; Matrix representation; Coherent pairs; Jacobi matrices; N)-COHERENT PAIRS; (M;
D O I
10.1016/j.amc.2015.01.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a matrix characterization of semiclassical orthogonal polynomials in terms of the Jacobi matrix associated with the multiplication operator in the basis of orthogonal polynomials, and the lower triangular matrix that represents the orthogonal polynomials in terms of the monomial basis of polynomials. We also provide a matrix characterization for coherent pairs of linear functionals. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 50 条
  • [1] A matrix characterization for the Dv-semiclassical and Dv-coherent orthogonal polynomials
    Garza, Lino G.
    Garza, Luis E.
    Marcellan, Francisco
    Pinzon-Cortes, Natalia C.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 487 : 242 - 259
  • [2] The semiclassical Sobolev orthogonal polynomials A general approach
    Costas-Santos, R. S.
    Moreno-Balcazar, J. J.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (01) : 65 - 83
  • [3] SEMICLASSICAL ORTHOGONAL POLYNOMIALS
    HENDRIKSEN, E
    VANROSSUM, H
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1171 : 354 - 361
  • [4] Semiclassical Orthogonal Polynomials, Matrix Models and Isomonodromic Tau Functions
    M. Bertola
    B. Eynard
    J. Harnad
    [J]. Communications in Mathematical Physics, 2006, 263 : 401 - 437
  • [5] Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions
    Bertola, M
    Eynard, B
    Harnad, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (02) : 401 - 437
  • [6] Coherent orthogonal polynomials
    Celeghini, E.
    del Olmo, M. A.
    [J]. ANNALS OF PHYSICS, 2013, 335 : 78 - 85
  • [7] On orthogonal polynomials: semiclassical and of second category
    Atia, M. J.
    Leffet, S.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (01) : 35 - 47
  • [8] Generating Some Semiclassical Orthogonal Polynomials
    Sghaier, Mabrouk
    [J]. APPLIED MATHEMATICS E-NOTES, 2009, 9 : 168 - 176
  • [9] Semiclassical asymptotic behavior of orthogonal polynomials
    D. R. Yafaev
    [J]. Letters in Mathematical Physics, 2020, 110 : 2857 - 2891
  • [10] A semiclassical perspective on multivariate orthogonal polynomials
    Alvarez de Moralesa, Maria
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 447 - 456