A matrix approach for the semiclassical and coherent orthogonal polynomials

被引:8
|
作者
Garza, Lino G. [1 ]
Garza, Luis E. [2 ]
Marcellan, Francisco [1 ,3 ]
Pinzon-Cortes, Natalia C. [4 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Colima, Fac Ciencias, Colima 28045, Mexico
[3] Inst Ciencias Matemat ICMAT, Uam, Spain
[4] Univ Nacl Colombia, Fac Ciencias, Dept Matemat, Bogota 404310, Colombia
关键词
Semiclassical orthogonal polynomials; Matrix representation; Coherent pairs; Jacobi matrices; N)-COHERENT PAIRS; (M;
D O I
10.1016/j.amc.2015.01.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a matrix characterization of semiclassical orthogonal polynomials in terms of the Jacobi matrix associated with the multiplication operator in the basis of orthogonal polynomials, and the lower triangular matrix that represents the orthogonal polynomials in terms of the monomial basis of polynomials. We also provide a matrix characterization for coherent pairs of linear functionals. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 50 条
  • [41] Discrete orthogonal matrix polynomials
    Felipe, Raul
    [J]. ANALYSIS MATHEMATICA, 2009, 35 (03) : 189 - 197
  • [42] On an extension of symmetric coherent pairs of orthogonal polynomials
    Delgado, AM
    Marcellán, F
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 155 - 168
  • [43] What is beyond coherent pairs of orthogonal polynomials?
    Marcellan, F
    Petronilho, JC
    Perez, TE
    Pinar, MA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) : 267 - 277
  • [44] ORTHOGONAL POLYNOMIALS AND COHERENT PAIRS - THE CLASSICAL CASE
    MARCELLAN, F
    PETRONILHO, J
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (03): : 287 - 307
  • [45] Generalized coherent states for classical orthogonal polynomials
    Borzov, VV
    Damaskinsky, EV
    [J]. INTERNATIONAL SEMINAR DAY ON DIFFRACTION' 2002, PROCEEDINGS, 2002, : 47 - 53
  • [46] Δ-coherent pairs and orthogonal polynomials of a discrete variable
    Area, I
    Godoy, E
    Marcellán, F
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (01) : 31 - 57
  • [47] Hq-Semiclassical orthogonal polynomials via polynomial mappings
    Castillo, K.
    de Jesus, M. N.
    Marcellan, F.
    Petronilho, J.
    [J]. RAMANUJAN JOURNAL, 2021, 54 (01): : 113 - 136
  • [48] NEWTON SUM-RULES OF ZEROS OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS
    ZARZO, A
    DEHESA, JS
    RONVEAUX, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 33 (01) : 85 - 96
  • [49] On semiclassical orthogonal polynomials associated with a Freud-type weixght
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5295 - 5313
  • [50] The Symmetrical Hq-Semiclassical Orthogonal Polynomials of Class One
    Ghressi, Abdallah
    Kheriji, Lotfi
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5