A matrix approach for the semiclassical and coherent orthogonal polynomials

被引:8
|
作者
Garza, Lino G. [1 ]
Garza, Luis E. [2 ]
Marcellan, Francisco [1 ,3 ]
Pinzon-Cortes, Natalia C. [4 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Colima, Fac Ciencias, Colima 28045, Mexico
[3] Inst Ciencias Matemat ICMAT, Uam, Spain
[4] Univ Nacl Colombia, Fac Ciencias, Dept Matemat, Bogota 404310, Colombia
关键词
Semiclassical orthogonal polynomials; Matrix representation; Coherent pairs; Jacobi matrices; N)-COHERENT PAIRS; (M;
D O I
10.1016/j.amc.2015.01.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a matrix characterization of semiclassical orthogonal polynomials in terms of the Jacobi matrix associated with the multiplication operator in the basis of orthogonal polynomials, and the lower triangular matrix that represents the orthogonal polynomials in terms of the monomial basis of polynomials. We also provide a matrix characterization for coherent pairs of linear functionals. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 50 条
  • [21] ON CHARACTERIZATIONS OF DUNKL-SEMICLASSICAL ORTHOGONAL POLYNOMIALS
    Sghaier, M.
    Hamdi, S.
    [J]. MATEMATICHE, 2022, 77 (01): : 67 - 94
  • [22] Orthogonal matrix polynomials
    Durán, AJ
    López-Rodríguez, P
    [J]. LAREDO LECTURES ON ORTHOGONAL POLYNOMIALS AND SPECIAL FUNCTIONS, 2004, : 13 - 44
  • [23] Second structure relation for semiclassical orthogonal polynomials
    Marcellan, Francisco
    Sfaxi, Ridha
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) : 537 - 554
  • [24] DISCRETE SEMICLASSICAL ORTHOGONAL POLYNOMIALS OF CLASS ONE
    Dominici, Diego
    Marcellan, Francisco
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) : 389 - 411
  • [25] GENERATING-FUNCTIONS AND SEMICLASSICAL ORTHOGONAL POLYNOMIALS
    MARONI, P
    VANISEGHEM, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1003 - 1011
  • [26] DISCRETE SEMICLASSICAL ORTHOGONAL POLYNOMIALS - GENERALIZED MEIXNER
    RONVEAUX, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1986, 46 (04) : 403 - 407
  • [27] SOME SEMICLASSICAL ORTHOGONAL POLYNOMIALS OF CLASS ONE
    Maroni, P.
    Mejri, M.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (02): : 108 - 128
  • [28] Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials
    Aptekarev, AI
    Marcellan, F
    Rocha, IA
    [J]. JOURNAL OF APPROXIMATION THEORY, 1997, 90 (01) : 117 - 146
  • [29] The Toda and Painleve Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
    Cafasso, Mattia
    De La Iglesia, Manuel D.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [30] Coherent pairs of bivariate orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2019, 245 : 40 - 63