The semiclassical Sobolev orthogonal polynomials A general approach

被引:4
|
作者
Costas-Santos, R. S. [2 ]
Moreno-Balcazar, J. J. [1 ]
机构
[1] Univ Almeria, Dept Estadist & Matemat Aplicada, Inst Carlos Fis Teor & Computac I, Almeria 04120, Spain
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Orthogonal polynomials; Sobolev orthogonal polynomials; Semiclassical orthogonal polynomials; Operator theory; Nonstandard inner product;
D O I
10.1016/j.jat.2010.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that the polynomial sequence (Q(n)((lambda))) is a semiclassical Sobolev polynomial sequence when it is orthogonal with respect to the inner product (p r)s = < u p r > + lambda < u D p D r > where u is a semiclassical linear functional D is the differential the difference or the q difference operator and lambda is a positive constant In this paper we get algebraic and differential/difference properties for such polynomials as well as algebraic relations between them and the polynomial sequence orthogonal with respect to the semiclassical functional u The main goal of this article is to give a general approach to the study of the polynomials orthogonal with respect to the above nonstandard inner product regardless of the type of operator D considered Finally we illustrate our results by applying them to some known families of Sobolev orthogonal polynomial, as well as to some new ones introduced in this paper for the first time (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:65 / 83
页数:19
相关论文
共 50 条
  • [1] General Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    Ronveaux, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 614 - 634
  • [2] A matrix approach for the semiclassical and coherent orthogonal polynomials
    Garza, Lino G.
    Garza, Luis E.
    Marcellan, Francisco
    Pinzon-Cortes, Natalia C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 459 - 471
  • [3] SEMICLASSICAL ORTHOGONAL POLYNOMIALS
    HENDRIKSEN, E
    VANROSSUM, H
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1171 : 354 - 361
  • [4] On Sobolev orthogonal polynomials
    Marcellan, Francisco
    Xu, Yuan
    [J]. EXPOSITIONES MATHEMATICAE, 2015, 33 (03) : 308 - 352
  • [5] A new approach to the asymptotics of Sobolev type orthogonal polynomials
    Alfaro, M.
    Moreno-Balcazar, J. J.
    Pena, A.
    Rezola, M. L.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 460 - 480
  • [6] Orthogonal Polynomials Associated with Related Measures and Sobolev Orthogonal Polynomials
    A.C. Berti
    C.F. Bracciali
    A. Sri Ranga
    [J]. Numerical Algorithms, 2003, 34 : 203 - 216
  • [7] Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials
    Berti, AC
    Bracciali, CF
    Ranga, AS
    [J]. NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 203 - 216
  • [8] On generating Sobolev orthogonal polynomials
    Van Buggenhout N.
    [J]. Numerische Mathematik, 2023, 155 (3-4) : 415 - 443
  • [9] Sobolev Orthogonal Polynomials on a Simplex
    Aktas, Rabia
    Xu, Yuan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) : 3087 - 3131
  • [10] ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE
    Marriaga, Misael E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 679 - 691