Deep Quaternion Pose Proposals for 6D Object Pose Tracking

被引:1
|
作者
Majcher, Mateusz [1 ]
Kwolek, Bogdan [1 ]
机构
[1] AGH Univ Sci & Technol, 30 Mickiewicza, PL-30059 Krakow, Poland
关键词
D O I
10.1109/ICCVW54120.2021.00032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we study quaternion pose distributions for tracking in RGB image sequences the 6D pose of an object selected from a set of objects, for which common models were trained in advance. We propose an unit quaternion representation of the rotational state space for a particle filter, which is then integrated with the particle swarm optimization to shift samples toward local maximas. Owing to k-means++ we better maintain multimodal probability distributions. We train convolutional neural networks to estimate the 2D positions of fiducial points and then to determine PnP-based object pose hypothesis. A CNN is utilized to estimate the positions of fiducial points in order to calculate PnP-based object pose hypothesis. A common Siamese neural network for all objects, which is trained on keypoints from current and previous frame is employed to guide the particles towards predicted pose of the object. Such a keypoint based pose hypothesis is injected into the probability distribution that is recursively updated in a Bayesian framework. The 6D object pose tracker is evaluated on Nvidia Jetson AGX Xavier both on synthetic and real sequences of images acquired from a calibrated RGB camera.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 50 条
  • [1] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [2] Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation
    Wursthorn, Kira
    Hillemann, Markus
    Ulrich, Markus
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 223 - 230
  • [3] An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios
    Wu, Yanming
    Vandewalle, Patrick
    Slaets, Peter
    Demeester, Eric
    [J]. 2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 229 - 237
  • [4] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [5] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [6] PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation
    Chen, Wei
    Duan, Jinming
    Basevi, Hector
    Chang, Hyung Jin
    Leonardis, Ales
    [J]. 2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2813 - 2822
  • [7] 6D Object Pose Tracking with Optical Flow Network for Robotic Manipulation
    Chen, Tao
    Gu, Dongbing
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 8048 - 8053
  • [8] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [9] DPOD: 6D Pose Object Detector and Refiner
    Zakharov, Sergey
    Shugurov, Ivan
    Ilic, Slobodan
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1941 - 1950
  • [10] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35