4D Acoustoelectric Imaging of Current Sources in a Human Head Phantom

被引:0
|
作者
Qin, Yexian [1 ]
Ingram, Pier [1 ]
Burton, Alex [2 ]
Witte, Russell S. [1 ,2 ,3 ]
机构
[1] Univ Arizona, Dept Med Imaging, Tucson, AZ 85724 USA
[2] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[3] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
Function brain imaging; inverse problem; acoustoelectric; Ultrasound; ultrasound current source density imaging; EEG; EcoG; Electroencephalography; evoked potentials; DENSITY; TOMOGRAPHY; SIMULATION; CORTEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical brain mapping typically suffers from poor spatial resolution due to the uncertain spread of electric field lines through the brain and skull. To overcome this limitation, we propose 4D acoustoelectric brain imaging (ABI) for mapping current densities at a spatial resolution confined to the ultrasound (US) focal spot. Acoustoelectric (AE) imaging exploits an interaction between a pressure wave and tissue resistivity. It has been used to dynamically map the cardiac activation wave in the live rabbit heart. Our long-term goal is to extend this technique for electrical mapping of the human brain. In this study, we developed a human-size head and brain phantom to test and optimize ABI for detecting an embedded "EEG-Iike" electrical current. Detection thresholds for current sources more than 15 mm below the surface of the brain phantom was less than 1 mA/cm(2) using a 0.5-MHz or 1 MHz single element transducer and copper recording wires. Further optimization of ABI could enable detection of small neural currents in the brain and lead to a new modality for functional brain imaging.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] 4D iRIOM: 4D Imaging Radar Inertial Odometry and Mapping
    Zhuang, Yuan
    Wang, Binliang
    Huai, Jianzhu
    Li, Miao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06): : 3246 - 3253
  • [42] 4D IMRT QA: OptimumWays to Setup Motion Phantom
    Zhang, M.
    Song, Y.
    Voros, L.
    Tang, X.
    MEDICAL PHYSICS, 2019, 46 (06) : E569 - E569
  • [43] A novel deformable lung phantom for 4D radiotherapy verification
    Margeanu, M.
    Stroian, G.
    Heath, E.
    Seuntjens, J.
    MEDICAL PHYSICS, 2007, 34 (06) : 2649 - 2649
  • [44] A 4D volumetric imaging system
    Ansbro, E
    OPTP-IRELAND 2002: OPTICAL METROLOGY, IMAGING, AND MACHINE VISION, 2003, 4877 : 278 - 280
  • [45] A feasibility study on evaluation of moving phantom for 4D radiotherapy
    Lim, S
    Yi, B
    Ahn, S
    Kim, J
    Lee, S
    Shin, S
    Choi, E
    MEDICAL PHYSICS, 2005, 32 (06) : 1921 - 1922
  • [46] 4D flow imaging with MRI
    Stankovic, Zoran
    Allen, Bradley D.
    Garcia, Julio
    Jarvis, Kelly B.
    Markl, Michael
    CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2014, 4 (02) : 173 - 192
  • [47] Optimizing 4D fluid imaging
    McInally, AT
    Redondo-López, T
    Garnham, J
    Kunka, J
    Brooks, AD
    Hansen, LS
    Barclay, F
    Davies, D
    PETROLEUM GEOSCIENCE, 2003, 9 (01) : 91 - 101
  • [48] 4D imaging and treatment planning
    Rietzel, E
    Chen, GTY
    Choi, NC
    Willett, CG
    RADIOTHERAPY AND ONCOLOGY, 2004, 73 : S140 - S140
  • [49] Realistic CT simulation using the 4D XCAT phantom
    Segars, W. P.
    Mahesh, M.
    Beck, T. J.
    Frey, E. C.
    Tsui, B. M. W.
    MEDICAL PHYSICS, 2008, 35 (08) : 3800 - 3808
  • [50] A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation
    Markel, D.
    El Naqa, I.
    Levesque, I.
    MEDICAL PHYSICS, 2014, 41 (06) : 473 - 473