4D Acoustoelectric Imaging of Current Sources in a Human Head Phantom

被引:0
|
作者
Qin, Yexian [1 ]
Ingram, Pier [1 ]
Burton, Alex [2 ]
Witte, Russell S. [1 ,2 ,3 ]
机构
[1] Univ Arizona, Dept Med Imaging, Tucson, AZ 85724 USA
[2] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[3] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
Function brain imaging; inverse problem; acoustoelectric; Ultrasound; ultrasound current source density imaging; EEG; EcoG; Electroencephalography; evoked potentials; DENSITY; TOMOGRAPHY; SIMULATION; CORTEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical brain mapping typically suffers from poor spatial resolution due to the uncertain spread of electric field lines through the brain and skull. To overcome this limitation, we propose 4D acoustoelectric brain imaging (ABI) for mapping current densities at a spatial resolution confined to the ultrasound (US) focal spot. Acoustoelectric (AE) imaging exploits an interaction between a pressure wave and tissue resistivity. It has been used to dynamically map the cardiac activation wave in the live rabbit heart. Our long-term goal is to extend this technique for electrical mapping of the human brain. In this study, we developed a human-size head and brain phantom to test and optimize ABI for detecting an embedded "EEG-Iike" electrical current. Detection thresholds for current sources more than 15 mm below the surface of the brain phantom was less than 1 mA/cm(2) using a 0.5-MHz or 1 MHz single element transducer and copper recording wires. Further optimization of ABI could enable detection of small neural currents in the brain and lead to a new modality for functional brain imaging.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Imaging proteolysis in 4D
    Sloane, BF
    Sameni, M
    Roshy, S
    Cavallo-Medved, D
    Moin, K
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2004, 52 : S13 - S13
  • [32] 4D Flow Imaging: Current Status to Future Clinical Applications
    Markl, Michael
    Schnell, Susanne
    Barker, Alex J.
    CURRENT CARDIOLOGY REPORTS, 2014, 16 (05)
  • [33] 4D Numerical Tumour Phantom for PET Oncology
    Shepherd, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 : S261 - S261
  • [34] 4D STATIC SOLUTIONS WITH INTERACTING PHANTOM FIELDS
    Dzhunushaliev, Vladimir
    Folomeev, Vladimir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (11): : 2125 - 2142
  • [35] A 4D Multimodal Lung Phantom for Regmentation Evaluation
    Markerl, D.
    Levesque, I. R.
    El Naqa, I.
    MEDICAL PHYSICS, 2014, 41 (08) : 21 - 21
  • [36] Validation in 4D Dosimetry Using Dynamic Phantom
    Lin, C.
    Huang, T.
    Lin, C.
    Nien, H.
    Tu, P.
    Lui, L.
    Wu, C.
    MEDICAL PHYSICS, 2016, 43 (06) : 3552 - 3553
  • [37] A deformable phantom for quality assurance in 4D radiotherapy
    Margeanu, M.
    Heath, E.
    Stroian, G.
    Seuntjens, J.
    RADIOTHERAPY AND ONCOLOGY, 2007, 84 : S80 - S81
  • [38] A robotic 4D phantom for the radiotherapy of moving objects
    Baier, K.
    Wilbert, J.
    Richter, A.
    Guckenberger, M.
    Flentje, M.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2007, 183 : 15 - 15
  • [39] Development of a Dynamic 4D Anthropomorphic Breast Phantom for Contrast-based Breast Imaging
    Kiarashi, Nooshin
    Lin, Yuan
    Segars, Willliam P.
    Ghate, Sujata V.
    Ikejimba, Lynda
    Chen, Baiyu
    Lo, Joseph Y.
    Dobbins, James T., III
    Nolte, Loren W.
    Samei, Ehsan
    MEDICAL IMAGING 2012: PHYSICS OF MEDICAL IMAGING, 2012, 8313
  • [40] A Novel 3D Printed Phantom for 4D PET/CT Imaging and SIB Radiotherapy Verification
    Soultan, D.
    Murphy, J.
    Gill, B.
    Moiseenko, V.
    Cervino, L.
    MEDICAL PHYSICS, 2015, 42 (06) : 3659 - 3659