CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies

被引:56
|
作者
Wang, Jianhua [1 ,2 ]
Huang, Dandan [1 ,2 ]
Zhou, Yao [1 ,2 ]
Yao, Hongcheng [3 ]
Liu, Huanhuan [2 ]
Zhai, Sinan [4 ]
Wu, Chengwei [4 ]
Zheng, Zhanye [2 ]
Zhao, Ke [2 ]
Wang, Zhao [2 ]
Yi, Xianfu [4 ]
Zhang, Shijie [2 ]
Liu, Xiaorong [5 ]
Liu, Zipeng [6 ]
Chen, Kexin [7 ]
Yu, Ying [2 ]
Sham, Pak Chung [6 ]
Li, Mulin Jun [1 ,2 ,7 ]
机构
[1] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Collaborat Innovat Ctr Tianjin Med Epigenet 2011, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin Key Lab Inflammat Biol, Tianjin, Peoples R China
[3] Univ Hong Kong, LKS Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[4] Tianjin Med Univ, Sch Biomed Engn, Tianjin, Peoples R China
[5] Shenzhen Childrens Hosp, Inst Pediat, Clin Lab, Shenzhen, Peoples R China
[6] Univ Hong Kong, LKS Fac Med, Ctr Genom Sci, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[7] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjin Key Lab Mol Canc Epidemiol,Dept Epidemiol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPLEX TRAITS; VISUALIZATION; LOCI;
D O I
10.1093/nar/gkz1026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS si1nificant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.
引用
收藏
页码:D807 / D816
页数:10
相关论文
共 50 条
  • [41] Genome-wide association studies identified variants for taurine concentration in Japanese Black beef
    Sasago, Nanae
    Takeda, Masayuki
    Ohtake, Tsuyoshi
    Abe, Tsuyoshi
    Sakuma, Hironori
    Kojima, Takatoshi
    Sasaki, Shinji
    Uemoto, Yoshinobu
    ANIMAL SCIENCE JOURNAL, 2018, 89 (08) : 1051 - 1059
  • [42] Genome-wide association studies - A summary for the clinical gastroenterologist
    Melum, Espen
    Franke, Andre
    Karlsen, Tom H.
    WORLD JOURNAL OF GASTROENTEROLOGY, 2009, 15 (43) : 5377 - 5396
  • [43] Genome-wide association studies - A summary for the clinical gastroenterologist
    Espen Melum
    Andre Franke
    Tom H Karlsen
    World Journal of Gastroenterology, 2009, 15 (43) : 5377 - 5396
  • [44] SumVg: Total Heritability Explained by All Variants in Genome-Wide Association Studies Based on Summary Statistics with Standard Error Estimates
    So, Hon-Cheong
    Xue, Xiao
    Ma, Zhijie
    Sham, Pak-Chung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [45] Multi-trait analysis of genome-wide association summary statistics using MTAG (vol 50, pg 229, 2018)
    Turley, Patrick
    Walters, Raymond K.
    Maghzian, Omeed
    Okbay, Aysu
    Lee, James J.
    Fontana, Mark Alan
    Tuan Anh Nguyen-Viet
    Wedow, Robbee
    Zacher, Meghan
    Furlotte, Nicholas A.
    Magnusson, Patrik
    Oskarsson, Sven
    Johannesson, Magnus
    Visscher, Peter M.
    Laibson, David
    Cesarini, David
    Neale, Benjamin M.
    Benjamin, Daniel J.
    NATURE GENETICS, 2019, 51 (08) : 1295 - 1295
  • [46] Multivariate Analysis of Anthropometric Traits Using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium
    Park, Haeil
    Li, Xiaoyin
    Song, Yeunjoo E.
    He, Karen Y.
    Zhu, Xiaofeng
    PLOS ONE, 2016, 11 (10):
  • [47] Dual-trait genomic analysis in highly stratified Arabidopsis thaliana populations using genome-wide association summary statistics
    Feng, Xiao
    Zan, Yanjun
    Li, Ting
    Yao, Yue
    Ning, Zheng
    Li, Jiabei
    Charati, Hadi
    Xu, Weilin
    Wan, Qianhui
    Zeng, Dongyu
    Zeng, Ziyi
    Liu, Yang
    Shen, Xia
    HEREDITY, 2024, 133 (01) : 11 - 20
  • [48] Multivariate Analysis of Anthropometric Traits using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium
    Park, Haeil
    Li, Xiaoyin
    Song, Yeunjoo E.
    He, Karen Y.
    Zhu, Xiaofeng
    GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 655 - 656
  • [49] Benchmarking of local genetic correlation estimation methods using summary statistics from genome-wide association studies
    Zhang, Chi
    Zhang, Yiliang
    Zhang, Yunxuan
    Zhao, Hongyu
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [50] Multi-trait analysis of genome-wide association summary statistics using MTAG (vol 50, pg 229, 2017)
    Turley, Patrick
    Walters, Raymond K.
    Maghzian, Omeed
    Okbay, Aysu
    Lee, James J.
    Fontana, Mark Alan
    Tuan Anh Nguyen-Viet
    Wedow, Robbee
    Zacher, Meghan
    Furlotte, Nicholas A.
    Magnusson, Patrik
    Oskarsson, Sven
    Johannesson, Magnus
    Visscher, Peter M.
    Laibson, David
    Cesarini, David
    Neale, Benjamin M.
    Benjamin, Daniel J.
    NATURE GENETICS, 2019, 51 (07) : 1190 - 1190