CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies

被引:56
|
作者
Wang, Jianhua [1 ,2 ]
Huang, Dandan [1 ,2 ]
Zhou, Yao [1 ,2 ]
Yao, Hongcheng [3 ]
Liu, Huanhuan [2 ]
Zhai, Sinan [4 ]
Wu, Chengwei [4 ]
Zheng, Zhanye [2 ]
Zhao, Ke [2 ]
Wang, Zhao [2 ]
Yi, Xianfu [4 ]
Zhang, Shijie [2 ]
Liu, Xiaorong [5 ]
Liu, Zipeng [6 ]
Chen, Kexin [7 ]
Yu, Ying [2 ]
Sham, Pak Chung [6 ]
Li, Mulin Jun [1 ,2 ,7 ]
机构
[1] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Collaborat Innovat Ctr Tianjin Med Epigenet 2011, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin Key Lab Inflammat Biol, Tianjin, Peoples R China
[3] Univ Hong Kong, LKS Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[4] Tianjin Med Univ, Sch Biomed Engn, Tianjin, Peoples R China
[5] Shenzhen Childrens Hosp, Inst Pediat, Clin Lab, Shenzhen, Peoples R China
[6] Univ Hong Kong, LKS Fac Med, Ctr Genom Sci, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[7] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjin Key Lab Mol Canc Epidemiol,Dept Epidemiol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPLEX TRAITS; VISUALIZATION; LOCI;
D O I
10.1093/nar/gkz1026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS si1nificant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.
引用
收藏
页码:D807 / D816
页数:10
相关论文
共 50 条
  • [11] Comparison of Multiple Phenotype Association Tests Using Summary Statistics in Genome-wide Association Studies
    Sitlani, Colleen M.
    Baldassari, Antoine R.
    Highland, Heather M.
    Hodonsky, Chani J.
    McKnight, Barbara
    Avery, Christy L.
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 909 - 910
  • [12] A Unifying Framework for Imputing Summary Statistics in Genome-Wide Association Studies
    Wu, Yue
    Eskin, Eleazar
    Sankararaman, Sriram
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (03) : 418 - 428
  • [13] Genome-wide Disease Association Studies of Inversion Variants
    Ma, Jianzhong
    Amos, Christopher I.
    GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 767 - 767
  • [14] Publisher Correction: Multi-trait analysis of genome-wide association summary statistics using MTAG
    Patrick Turley
    Raymond K. Walters
    Omeed Maghzian
    Aysu Okbay
    James J. Lee
    Mark Alan Fontana
    Tuan Anh Nguyen-Viet
    Robbee Wedow
    Meghan Zacher
    Nicholas A. Furlotte
    Patrik Magnusson
    Sven Oskarsson
    Magnus Johannesson
    Peter M. Visscher
    David Laibson
    David Cesarini
    Benjamin M. Neale
    Daniel J. Benjamin
    Nature Genetics, 2019, 51 : 1190 - 1190
  • [15] Author Correction: Multi-trait analysis of genome-wide association summary statistics using MTAG
    Patrick Turley
    Raymond K. Walters
    Omeed Maghzian
    Aysu Okbay
    James J. Lee
    Mark Alan Fontana
    Tuan Anh Nguyen-Viet
    Robbee Wedow
    Meghan Zacher
    Nicholas A. Furlotte
    Patrik Magnusson
    Sven Oskarsson
    Magnus Johannesson
    Peter M. Visscher
    David Laibson
    David Cesarini
    Benjamin M. Neale
    Daniel J. Benjamin
    Nature Genetics, 2019, 51 : 1295 - 1295
  • [16] Benchmarking Mendelian randomization methods for causal inference using genome-wide association study summary statistics
    Hu, Xianghong
    Cai, Mingxuan
    Xiao, Jiashun
    Wan, Xiaomeng
    Wang, Zhiwei
    Zhao, Hongyu
    Yang, Can
    AMERICAN JOURNAL OF HUMAN GENETICS, 2024, 111 (08)
  • [17] Reproduction and In-Depth Evaluation of Genome-Wide Association Studies and Genome-Wide Meta-analyses Using Summary Statistics
    Niu, Yao-Fang
    Ye, Chengyin
    He, Ji
    Han, Fang
    Guo, Long-Biao
    Zheng, Hou-Feng
    Chen, Guo-Bo
    G3-GENES GENOMES GENETICS, 2017, 7 (03): : 943 - 952
  • [18] Inferring Causal Relationships Between Metabolites and Polycystic Ovary Syndrome Using Summary Statistics from Genome-Wide Association Studies
    Meng, Xiang-He
    Chen, Bin-Bin
    Liu, Xiao-Wen
    Zhang, Jing-Xi
    Xie, Shun
    Liu, Lv-Jun
    Wen, Li-Feng
    Deng, Ai-Min
    Mao, Zeng-Hui
    REPRODUCTIVE SCIENCES, 2024, 31 (03) : 832 - 839
  • [19] Comparison of adaptive multiple phenotype association tests using summary statistics in genome-wide association studies
    Sitlani, Colleen M.
    Baldassari, Antoine R.
    Highland, Heather M.
    Hodonsky, Chani J.
    McKnight, Barbara
    Avery, Christy L.
    HUMAN MOLECULAR GENETICS, 2021, 30 (15) : 1371 - 1383
  • [20] A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studies
    Shao, Zhonghe
    Wang, Ting
    Qiao, Jiahao
    Zhang, Yuchen
    Huang, Shuiping
    Zeng, Ping
    BMC BIOINFORMATICS, 2022, 23 (01)