CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies

被引:56
|
作者
Wang, Jianhua [1 ,2 ]
Huang, Dandan [1 ,2 ]
Zhou, Yao [1 ,2 ]
Yao, Hongcheng [3 ]
Liu, Huanhuan [2 ]
Zhai, Sinan [4 ]
Wu, Chengwei [4 ]
Zheng, Zhanye [2 ]
Zhao, Ke [2 ]
Wang, Zhao [2 ]
Yi, Xianfu [4 ]
Zhang, Shijie [2 ]
Liu, Xiaorong [5 ]
Liu, Zipeng [6 ]
Chen, Kexin [7 ]
Yu, Ying [2 ]
Sham, Pak Chung [6 ]
Li, Mulin Jun [1 ,2 ,7 ]
机构
[1] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Collaborat Innovat Ctr Tianjin Med Epigenet 2011, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin Key Lab Inflammat Biol, Tianjin, Peoples R China
[3] Univ Hong Kong, LKS Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[4] Tianjin Med Univ, Sch Biomed Engn, Tianjin, Peoples R China
[5] Shenzhen Childrens Hosp, Inst Pediat, Clin Lab, Shenzhen, Peoples R China
[6] Univ Hong Kong, LKS Fac Med, Ctr Genom Sci, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[7] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjin Key Lab Mol Canc Epidemiol,Dept Epidemiol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPLEX TRAITS; VISUALIZATION; LOCI;
D O I
10.1093/nar/gkz1026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS si1nificant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.
引用
收藏
页码:D807 / D816
页数:10
相关论文
共 50 条
  • [31] Risk Variants Identified in Genome-wide Association Studies and Their Role in Myocardial Infarction
    Koch, Werner
    Hoppmann, Petra
    Ed, Anna
    Erl, Anna
    Tuerk, Serin
    Schrempf, Matthias
    Schoemig, Albert
    Kastrati, Adnan
    CIRCULATION, 2009, 120 (18) : S567 - S567
  • [32] Cumulative Effects of Variants Identified by Genome-wide Association Studies in IgA Nephropathy
    Zhou, Xu-Jie
    Qi, Yuan-Yuan
    Hou, Ping
    Lv, Ji-Cheng
    Shi, Su-Fang
    Liu, Li-Jun
    Zhao, Na
    Zhang, Hong
    SCIENTIFIC REPORTS, 2014, 4
  • [33] Partitioning heritability by functional annotation using genome-wide association summary statistics
    Hilary K Finucane
    Brendan Bulik-Sullivan
    Alexander Gusev
    Gosia Trynka
    Yakir Reshef
    Po-Ru Loh
    Verneri Anttila
    Han Xu
    Chongzhi Zang
    Kyle Farh
    Stephan Ripke
    Felix R Day
    Shaun Purcell
    Eli Stahl
    Sara Lindstrom
    John R B Perry
    Yukinori Okada
    Soumya Raychaudhuri
    Mark J Daly
    Nick Patterson
    Benjamin M Neale
    Alkes L Price
    Nature Genetics, 2015, 47 : 1228 - 1235
  • [34] Partitioning heritability by functional annotation using genome-wide association summary statistics
    Finucane, Hilary K.
    Bulik-Sullivan, Brendan
    Gusev, Alexander
    Trynka, Gosia
    Reshef, Yakir
    Loh, Po-Ru
    Anttila, Verneri
    Xu, Han
    Zang, Chongzhi
    Farh, Kyle
    Ripke, Stephan
    Day, Felix R.
    Purcell, Shaun
    Stahl, Eli
    Lindstrom, Sara
    Perry, John R. B.
    Okada, Yukinori
    Raychaudhuri, Soumya
    Daly, Mark J.
    Patterson, Nick
    Neale, Benjamin M.
    Price, Alkes L.
    NATURE GENETICS, 2015, 47 (11) : 1228 - +
  • [35] A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES
    Zhou, Xiang
    ANNALS OF APPLIED STATISTICS, 2017, 11 (04): : 2027 - 2051
  • [36] Multiethnic Joint Analysis of Marginal Summary Statistics from Genome-wide Association Studies
    Shen, Jiayi
    Jiang, Lai
    Wang, Kan
    Newcombe, Paul J.
    Haiman, Chris
    Conti, David V.
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 789 - 789
  • [37] Comparison of three gene summary statistics for gene rankings in genome-wide association studies
    Freytag, Saskia
    Bickeboeller, Heike
    ANNALS OF HUMAN GENETICS, 2012, 76 : 415 - 415
  • [38] GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies
    He, Zihuai
    Liu, Linxi
    Belloy, Michael E.
    Le Guen, Yann
    Sossin, Aaron
    Liu, Xiaoxia
    Qi, Xinran
    Ma, Shiyang
    Gyawali, Prashnna K.
    Wyss-Coray, Tony
    Tang, Hua
    Sabatti, Chiara
    Candes, Emmanuel
    Greicius, Michael D.
    Ionita-Laza, Iuliana
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [39] GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies
    Zihuai He
    Linxi Liu
    Michael E. Belloy
    Yann Le Guen
    Aaron Sossin
    Xiaoxia Liu
    Xinran Qi
    Shiyang Ma
    Prashnna K. Gyawali
    Tony Wyss-Coray
    Hua Tang
    Chiara Sabatti
    Emmanuel Candès
    Michael D. Greicius
    Iuliana Ionita-Laza
    Nature Communications, 13
  • [40] Generalization of Variants Identified by Genome-Wide Association Studies for Electrocardiographic Traits in African Americans
    Jeff, Janina M.
    Ritchie, Marylyn D.
    Denny, Joshua C.
    Kho, Abel N.
    Ramirez, Andrea H.
    Crosslin, David
    Armstrong, Loren
    Basford, Melissa A.
    Wolf, Wendy A.
    Pacheco, Jennifer A.
    Chisholm, Rex L.
    Roden, Dan M.
    Hayes, M. Geoffrey
    Crawford, Dana C.
    ANNALS OF HUMAN GENETICS, 2013, 77 : 321 - 332