CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies

被引:56
|
作者
Wang, Jianhua [1 ,2 ]
Huang, Dandan [1 ,2 ]
Zhou, Yao [1 ,2 ]
Yao, Hongcheng [3 ]
Liu, Huanhuan [2 ]
Zhai, Sinan [4 ]
Wu, Chengwei [4 ]
Zheng, Zhanye [2 ]
Zhao, Ke [2 ]
Wang, Zhao [2 ]
Yi, Xianfu [4 ]
Zhang, Shijie [2 ]
Liu, Xiaorong [5 ]
Liu, Zipeng [6 ]
Chen, Kexin [7 ]
Yu, Ying [2 ]
Sham, Pak Chung [6 ]
Li, Mulin Jun [1 ,2 ,7 ]
机构
[1] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Collaborat Innovat Ctr Tianjin Med Epigenet 2011, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin Key Lab Inflammat Biol, Tianjin, Peoples R China
[3] Univ Hong Kong, LKS Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[4] Tianjin Med Univ, Sch Biomed Engn, Tianjin, Peoples R China
[5] Shenzhen Childrens Hosp, Inst Pediat, Clin Lab, Shenzhen, Peoples R China
[6] Univ Hong Kong, LKS Fac Med, Ctr Genom Sci, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[7] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjin Key Lab Mol Canc Epidemiol,Dept Epidemiol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPLEX TRAITS; VISUALIZATION; LOCI;
D O I
10.1093/nar/gkz1026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS si1nificant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.
引用
收藏
页码:D807 / D816
页数:10
相关论文
共 50 条
  • [1] Prospects of fine-mapping causal genetic variants using summary statistics from genome-wide association studies
    Benner, C.
    Havulinna, A.
    Jarvelin, M.
    Salomaa, V.
    Ripatti, S.
    Pirinen, M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 64 - 65
  • [2] GWASdb: a database for human genetic variants identified by genome-wide association studies
    Li, Mulin Jun
    Wang, Panwen
    Liu, Xiaorong
    Lim, Ee Lyn
    Wang, Zhangyong
    Yeager, Meredith
    Wong, Maria P.
    Sham, Pak Chung
    Chanock, Stephen J.
    Wang, Junwen
    NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) : D1047 - D1054
  • [3] Cross-trait prediction accuracy of summary statistics in genome-wide association studies
    Zhao, Bingxin
    Zou, Fei
    Zhu, Hongtu
    BIOMETRICS, 2023, 79 (02) : 841 - 853
  • [4] Inferring causal relationships between phenotypes using summary statistics from genome-wide association studies
    Xiang-He Meng
    Hui Shen
    Xiang-Ding Chen
    Hong-Mei Xiao
    Hong-Wen Deng
    Human Genetics, 2018, 137 : 247 - 255
  • [5] Inferring causal relationships between phenotypes using summary statistics from genome-wide association studies
    Meng, Xiang-He
    Shen, Hui
    Chen, Xiang-Ding
    Xiao, Hong-Mei
    Deng, Hong-Wen
    HUMAN GENETICS, 2018, 137 (03) : 247 - 255
  • [6] Adjustment for covariates using summary statistics of genome-wide association studies
    Wang, Tao
    Xue, Xiaonan
    Xie, Xianhong
    Ye, Kenny
    Zhu, Xiaofeng
    Elston, Robert C.
    GENETIC EPIDEMIOLOGY, 2018, 42 (08) : 812 - 825
  • [7] Multi-trait analysis of genome-wide association summary statistics using MTAG
    Turley, Patrick
    Walters, Raymond K.
    Maghzian, Omeed
    Okbay, Aysu
    Lee, James J.
    Fontana, Mark Alan
    Tuan Anh Nguyen-Viet
    Wedow, Robbee
    Zacher, Meghan
    Furlotte, Nicholas A.
    Magnusson, Patrik
    Oskarsson, Sven
    Johannesson, Magnus
    Visscher, Peter M.
    Laibson, David
    Cesarini, David
    Neale, Benjamin M.
    Benjamin, Daniel J.
    NATURE GENETICS, 2018, 50 (02) : 229 - +
  • [8] Multi-trait analysis of genome-wide association summary statistics using MTAG
    Patrick Turley
    Raymond K. Walters
    Omeed Maghzian
    Aysu Okbay
    James J. Lee
    Mark Alan Fontana
    Tuan Anh Nguyen-Viet
    Robbee Wedow
    Meghan Zacher
    Nicholas A. Furlotte
    Patrik Magnusson
    Sven Oskarsson
    Magnus Johannesson
    Peter M. Visscher
    David Laibson
    David Cesarini
    Benjamin M. Neale
    Daniel J. Benjamin
    Nature Genetics, 2018, 50 : 229 - 237
  • [9] An adaptive and robust method for multi-trait analysis of genome-wide association studies using summary statistics
    Deng, Qiaolan
    Song, Chi
    Lin, Shili
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 (06) : 681 - 690
  • [10] Multiple phenotype association tests using summary statistics in genome-wide association studies
    Liu, Zhonghua
    Lin, Xihong
    BIOMETRICS, 2018, 74 (01) : 165 - 175