Propagation and reflection of singularities for the nonlinear Schrodinger equation

被引:6
|
作者
Szeftel, J [1 ]
机构
[1] Univ Paris 13, LAGA UMR 7539, Inst Galilee, F-93430 Villetaneuse, France
关键词
D O I
10.5802/aif.2108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a paradifferential calculus well-suited to the Schrodinger equation which allows us to prove a result on propagation of singularities for the nonlinear Schrodinger equation by adapting Bony's method. We also construct the tangential version of the previous paradifferential calculus which allows us to prove a result on reflection of singularities for the nonlinear Schrodinger equation. We then use this result to compute the Dirichlet to Neumann map of the nonlinear Schrodinger equation.
引用
收藏
页码:573 / +
页数:101
相关论文
共 50 条
  • [21] Semiclassical singularities propagation property for Schrodinger equations
    Nakamura, Shu
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (01) : 177 - 211
  • [22] Propagation of solitons of the Derivative Nonlinear Schrodinger equation in a plasma with fluctuating density
    Ruderman, MS
    PHYSICS OF PLASMAS, 2002, 9 (07) : 2940 - 2945
  • [23] On the solution of the perturbed nonlinear Schrodinger equation or the propagation of light in optical fibers
    Ahmad, F
    Razzaghi, M
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1997, 16 (02) : 74 - 77
  • [24] The nonlinear Schrodinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface
    Chabchoub, A.
    Kibler, B.
    Finot, C.
    Millot, G.
    Onorato, M.
    Dudley, J. M.
    Babanin, A. V.
    ANNALS OF PHYSICS, 2015, 361 : 490 - 500
  • [25] Optical propagation patterns in medium modeled by the generalized nonlinear Schrodinger equation
    Liu, Ya-nan
    Wang, Chun-yan
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (08)
  • [26] DOES THE NONLINEAR SCHRODINGER-EQUATION CORRECTLY DESCRIBE BEAM PROPAGATION
    AKHMEDIEV, N
    ANKIEWICZ, A
    SOTOCRESPO, JM
    OPTICS LETTERS, 1993, 18 (06) : 411 - 413
  • [27] On the structure of singularities in solutions of the nonlinear Schrodinger equation for the critical case, p = 4/n
    Angulo, J
    Bona, JL
    Linares, F
    Scialom, M
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 3 - 22
  • [28] NONLINEAR SCHRODINGER EQUATION
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 869 - 872
  • [29] NONLINEAR SCHRODINGER EQUATION
    BIROLI, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 854 - 859
  • [30] SCHRODINGER-EQUATION AND PROPAGATION OF SINGULARITIES FOR PSEUDODIFFERENTIAL-OPERATORS WITH VARIABLE MULTIPLICITY REAL CHARACTERISTICS
    LASCAR, B
    SJOSTRAND, J
    ASTERISQUE, 1982, (95) : 169 - 207