Propagation and reflection of singularities for the nonlinear Schrodinger equation

被引:6
|
作者
Szeftel, J [1 ]
机构
[1] Univ Paris 13, LAGA UMR 7539, Inst Galilee, F-93430 Villetaneuse, France
关键词
D O I
10.5802/aif.2108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a paradifferential calculus well-suited to the Schrodinger equation which allows us to prove a result on propagation of singularities for the nonlinear Schrodinger equation by adapting Bony's method. We also construct the tangential version of the previous paradifferential calculus which allows us to prove a result on reflection of singularities for the nonlinear Schrodinger equation. We then use this result to compute the Dirichlet to Neumann map of the nonlinear Schrodinger equation.
引用
收藏
页码:573 / +
页数:101
相关论文
共 50 条
  • [41] Numerical simulation of internal waves propagation in deep sea by nonlinear Schrodinger equation
    Song Shi-Yan
    Wang Jing
    Wang Jian-Bu
    Song Sha-Sha
    Meng Jun-Min
    ACTA PHYSICA SINICA, 2010, 59 (09) : 6339 - 6344
  • [42] Propagation of singularities for the stochastic wave equation
    Lee, Cheuk Yin
    Xiao, Yimin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 143 : 31 - 54
  • [43] Convolution equation in S′* - Propagation of singularities
    Pilipovic, S
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (01): : 105 - 114
  • [44] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [46] Propagation of Gabor singularities for Schrodinger equations with quadratic Hamiltonians
    Pravda-Starov, Karel
    Rodino, Luigi
    Wahlberg, Patrik
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (01) : 128 - 159
  • [47] Solutions of a nonlinear Schrodinger equation
    deFigueiredo, DG
    Ding, YH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 563 - 584
  • [48] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [49] Multifrequency nonlinear Schrodinger equation
    Castello-Lurbe, David
    Silvestre, Enrique
    Andres, Miguel V.
    OPTICS LETTERS, 2024, 49 (16) : 4713 - 4716
  • [50] KAM for the nonlinear Schrodinger equation
    Eliasson, L. Hakan
    Kuksin, Sergei B.
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 371 - 435