DOES THE NONLINEAR SCHRODINGER-EQUATION CORRECTLY DESCRIBE BEAM PROPAGATION

被引:110
|
作者
AKHMEDIEV, N [1 ]
ANKIEWICZ, A [1 ]
SOTOCRESPO, JM [1 ]
机构
[1] CSIC, INST OPT, E-28006 MADRID, SPAIN
关键词
D O I
10.1364/OL.18.000411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The parabolic equation (nonlinear Schrodinger equation) that appears in problems of stationary nonlinear beam propagation (self-focusing) is reconsidered. It is shown that an additional term, which involves changes of the propagation constant along the propagation direction, should be taken into account. The physical consequences of this departure from the standard approximation, which uses the parabolic equation, are discussed. A numerical simulation showing the difference between the new approach and the standard nonlinear Schrodinger equation is given as an example.
引用
收藏
页码:411 / 413
页数:3
相关论文
共 50 条
  • [1] ON THE NONLINEAR SCHRODINGER-EQUATION
    DATSEFF, AB
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1985, : 739 - 740
  • [2] ON A RELATIVISTIC NONLINEAR SCHRODINGER-EQUATION
    DEBOUARD, A
    HAYASHI, N
    SAUT, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (02): : 175 - 178
  • [3] A NONLINEAR MODIFICATION OF THE SCHRODINGER-EQUATION
    STARUSZKIEWICZ, A
    ACTA PHYSICA POLONICA B, 1983, 14 (12): : 907 - 909
  • [4] NONLINEAR SCHRODINGER-EQUATION FOR SUPERCONDUCTORS
    AO, P
    THOULESS, DJ
    ZHU, XM
    MODERN PHYSICS LETTERS B, 1995, 9 (11-12): : 755 - 761
  • [5] THE FORCED NONLINEAR SCHRODINGER-EQUATION
    KAUP, DJ
    HANSEN, PJ
    PHYSICA D, 1986, 18 (1-3): : 77 - 84
  • [6] ON THE INTEGRABILITY OF A NONLINEAR SCHRODINGER-EQUATION
    NATTERMANN, P
    PHYSICA SCRIPTA, 1994, 50 (06): : 609 - 610
  • [7] ON THE STABILITY OF THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    MITCHELL, AR
    WEIDEMAN, JAC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) : 263 - 281
  • [8] NONLINEAR SCHRODINGER-EQUATION ON A CIRCLE
    SMONDYREV, MA
    VANSANT, P
    PEETERS, FM
    DEVREESE, JT
    PHYSICAL REVIEW B, 1995, 52 (15): : 11231 - 11237
  • [9] QUANTIZATION OF THE NONLINEAR SCHRODINGER-EQUATION
    HAUS, HA
    KARTNER, FX
    PHYSICAL REVIEW A, 1992, 46 (03): : R1175 - R1176
  • [10] ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    HAYASHI, N
    OZAWA, T
    PHYSICA D, 1992, 55 (1-2): : 14 - 36