A clustering cure rate model with application to a sealantstudy

被引:2
|
作者
Gallardo, Diego I. [1 ]
Bolfarine, Heleno [2 ]
Pedroso-de-Lima, Atonio Carlos [2 ]
机构
[1] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta, Chile
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
关键词
Bivariate random effects; competing risks; Dirichlet processes; EM algorithm; latent activation scheme; restricted maximum likelihood; MIXED-EFFECTS MODEL; VARIANCE-COMPONENTS; MIXTURE; LIKELIHOOD; CARCINOMA;
D O I
10.1080/02664763.2016.1267116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the destructive negative binomial (DNB) cure rate model with a latent activation scheme [V. Cancho, D. Bandyopadhyay, F. Louzada, and B. Yiqi, The DNB cure rate model with a latent activation scheme, Statistical Methodology 13 (2013b), pp. 48-68] is extended to the case where the observations are grouped into clusters. Parameter estimation is performed based on the restricted maximum likelihood approach and on a Bayesian approach based on Dirichlet process priors. An application to a real data set related to a sealant study in a dentistry experiment is considered to illustrate the performance of the proposed model.
引用
收藏
页码:2949 / 2962
页数:14
相关论文
共 50 条
  • [11] A flexible cure rate model with dependent censoring and a known cure threshold
    Bernhardt, Paul W.
    STATISTICS IN MEDICINE, 2016, 35 (25) : 4607 - 4623
  • [12] Goodness-of-fit tests for the cure rate in a mixture cure model
    Mueller, U. U.
    Van Keilegom, I.
    BIOMETRIKA, 2019, 106 (01) : 211 - 227
  • [13] Analysis of Minimax Error Rate for Crowdsourcing and Its Application to Worker Clustering Model
    Imamura, Hideaki
    Sato, Issei
    Sugiyama, Masashi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [14] A nonparametric mixture model for cure rate estimation
    Peng, YW
    Dear, KBG
    BIOMETRICS, 2000, 56 (01) : 237 - 243
  • [15] Cure rate model with interval censored data
    Kim, Yang-Jin
    Jhun, Myoungshic
    STATISTICS IN MEDICINE, 2008, 27 (01) : 3 - 14
  • [16] Negative Binomial–Lindley Cure Rate Model
    Wasinrat Sirithip
    Pudprommarat Chookait
    Lobachevskii Journal of Mathematics, 2021, 42 : 3230 - 3240
  • [17] A Cure Rate Model in Reliability for Complex System
    Lin, J.
    Zhu, H. M.
    IEEM: 2008 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-3, 2008, : 1395 - +
  • [18] The generalized exponential cure rate model with covariates
    Kannan, Nandini
    Kundu, Debasis
    Nair, P.
    Tripathi, R. C.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (10) : 1625 - 1636
  • [19] A New Cure Rate Model Based on Flory-Schulz Distribution: Application to the Cancer Data
    Azimi, Reza
    Esmailian, Mahdy
    Gallardo, Diego, I
    Gomez, Hector J.
    MATHEMATICS, 2022, 10 (24)
  • [20] An Application of the Cure Model to a Cardiovascular Clinical Trial
    Varadan Sevilimedu
    Shuangge Ma
    Pamela Hartigan
    Tassos C. Kyriakides
    Statistics in Biosciences, 2021, 13 : 402 - 430