A clustering cure rate model with application to a sealantstudy

被引:2
|
作者
Gallardo, Diego I. [1 ]
Bolfarine, Heleno [2 ]
Pedroso-de-Lima, Atonio Carlos [2 ]
机构
[1] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta, Chile
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
关键词
Bivariate random effects; competing risks; Dirichlet processes; EM algorithm; latent activation scheme; restricted maximum likelihood; MIXED-EFFECTS MODEL; VARIANCE-COMPONENTS; MIXTURE; LIKELIHOOD; CARCINOMA;
D O I
10.1080/02664763.2016.1267116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the destructive negative binomial (DNB) cure rate model with a latent activation scheme [V. Cancho, D. Bandyopadhyay, F. Louzada, and B. Yiqi, The DNB cure rate model with a latent activation scheme, Statistical Methodology 13 (2013b), pp. 48-68] is extended to the case where the observations are grouped into clusters. Parameter estimation is performed based on the restricted maximum likelihood approach and on a Bayesian approach based on Dirichlet process priors. An application to a real data set related to a sealant study in a dentistry experiment is considered to illustrate the performance of the proposed model.
引用
收藏
页码:2949 / 2962
页数:14
相关论文
共 50 条
  • [31] Global stability of an HIV pathogenesis model with cure rate
    Liu, Xiangdong
    Wang, Hui
    Hu, Zhixing
    Ma, Wanbiao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 2947 - 2961
  • [32] Bayesian semiparametric cure rate model with an unknown threshold
    Nieto-Barajas, Luis E.
    Yin, Guosheng
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (03) : 540 - 556
  • [33] On global stability of an HIV pathogenesis model with cure rate
    Muroya, Yoshiaki
    Enatsu, Yoichi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4001 - 4018
  • [34] Standard Exponential Cure Rate Model with Informative Censoring
    de Freitas, Luiz Antonio
    Rodrigues, Josemar
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (01) : 8 - 23
  • [35] A generalized F mixture model for cure rate estimation
    Peng, YW
    Dear, KBG
    Denham, JW
    STATISTICS IN MEDICINE, 1998, 17 (08) : 813 - 830
  • [36] A weighted Poisson distribution and its application to cure rate models
    Balakrishnan, N.
    Koutras, M. V.
    Milienos, F. S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (17) : 4297 - 4310
  • [37] Mathematical analysis of a virus dynamics model with general incidence rate and cure rate
    Hattaf, Khalid
    Yousfi, Noura
    Tridane, Abdessamad
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1866 - 1872
  • [38] Global dynamics of a virus dynamical model with general incidence rate and cure rate
    Tian, Yanni
    Liu, Xianning
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 16 : 17 - 26
  • [39] Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease
    Feng, Jiahui
    Shi, Haolun
    Ma, Da
    Beg, Mirza Faisal
    Cao, Jiguo
    STATISTICS IN MEDICINE, 2025, 44 (3-4)
  • [40] Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data
    Suvra Pal
    N. Balakrishnan
    Computational Statistics, 2017, 32 : 429 - 449