Goodness-of-fit tests for the cure rate in a mixture cure model

被引:14
|
作者
Mueller, U. U. [1 ]
Van Keilegom, I. [2 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Katholieke Univ Leuven, Res Ctr Operat Res & Business Stat, Naamsestr 69, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Beran estimator; Bootstrap; Censoring; Cure fraction; Kaplan-Meier estimator; Kernel estimator; Logistic model; SEMIPARAMETRIC MODELS; REGRESSION; BOOTSTRAP;
D O I
10.1093/biomet/asy058
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider models for time-to-event data that allow that an event, e.g., a relapse of a disease, never occurs for a certain percentage of the population, called the cure rate. We suppose that these data are subject to random right censoring and we model the data using a mixture cure model, in which the survival function of the uncured subjects is left unspecified. The aim is to test whether the cure rate , as a function of the covariates, satisfies a certain parametric model. To do so, we propose a test statistic that is inspired by a goodness-of-fit test for a regression function due to Hardle & Mammen (1993). We show that the statistic is asymptotically normally distributed under the null hypothesis, that the model is correctly specified, and under local alternatives. A bootstrap procedure is proposed to implement the test. The good performance of the approach is confirmed with simulations. For illustration we apply the test to data on the times between first and second births.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 50 条
  • [1] Goodness-of-fit test for a parametric mixture cure model with partly interval-censored data
    Geng, Ziqi
    Li, Jialiang
    Niu, Yi
    Wang, Xiaoguang
    STATISTICS IN MEDICINE, 2023, 42 (04) : 407 - 421
  • [2] Goodness-of-fit test for a parametric survival function with cure fraction
    Geerdens, Candida
    Janssen, Paul
    Van Keilegom, Ingrid
    TEST, 2020, 29 (03) : 768 - 792
  • [3] Goodness-of-fit test for a parametric survival function with cure fraction
    Candida Geerdens
    Paul Janssen
    Ingrid Van Keilegom
    TEST, 2020, 29 : 768 - 792
  • [4] Nonparametric goodness-of-fit tests for the Rasch model
    Ponocny, I
    PSYCHOMETRIKA, 2001, 66 (03) : 437 - 459
  • [5] Nonparametric goodness-of-fit tests for the rasch model
    Ivo Ponocny
    Psychometrika, 2001, 66 : 437 - 459
  • [6] Goodness-of-fit tests for mixed model diagnostics
    Jiang, JM
    ANNALS OF STATISTICS, 2001, 29 (04): : 1137 - 1164
  • [7] Adaptive goodness-of-fit tests in a density model
    Fromont, Magalie
    Laurent, Beatrice
    ANNALS OF STATISTICS, 2006, 34 (02): : 680 - 720
  • [8] Goodness-of-fit tests for the major gene model
    Guo, XQ
    Wickremasinghe, AR
    Wilson, AF
    Elston, RC
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 268 - 273
  • [9] Nonparametric goodness-of-fit tests for the rasch model
    Ivo Ponocny
    Psychometrika, 2002, 67 : 315 - 315
  • [10] Tuning goodness-of-fit tests
    Arrasmith, A.
    Follin, B.
    Anderes, E.
    Knox, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1889 - 1898