Goodness-of-fit tests for the cure rate in a mixture cure model

被引:14
|
作者
Mueller, U. U. [1 ]
Van Keilegom, I. [2 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Katholieke Univ Leuven, Res Ctr Operat Res & Business Stat, Naamsestr 69, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Beran estimator; Bootstrap; Censoring; Cure fraction; Kaplan-Meier estimator; Kernel estimator; Logistic model; SEMIPARAMETRIC MODELS; REGRESSION; BOOTSTRAP;
D O I
10.1093/biomet/asy058
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider models for time-to-event data that allow that an event, e.g., a relapse of a disease, never occurs for a certain percentage of the population, called the cure rate. We suppose that these data are subject to random right censoring and we model the data using a mixture cure model, in which the survival function of the uncured subjects is left unspecified. The aim is to test whether the cure rate , as a function of the covariates, satisfies a certain parametric model. To do so, we propose a test statistic that is inspired by a goodness-of-fit test for a regression function due to Hardle & Mammen (1993). We show that the statistic is asymptotically normally distributed under the null hypothesis, that the model is correctly specified, and under local alternatives. A bootstrap procedure is proposed to implement the test. The good performance of the approach is confirmed with simulations. For illustration we apply the test to data on the times between first and second births.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 50 条
  • [31] Goodness-of-fit tests for fuzzy data
    Grzegorzewski, Przemyslaw
    Szymanowski, Hubert
    INFORMATION SCIENCES, 2014, 288 : 374 - 386
  • [32] On goodness-of-fit tests for the Bell distribution
    Batsidis, Apostolos
    Jimenez-Gamero, Maria Dolores
    Lemonte, Artur J.
    METRIKA, 2020, 83 (03) : 297 - 319
  • [33] Goodness-of-fit tests for multivariate distributions
    Sueruecue, Baris
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1319 - 1331
  • [34] EFFICIENCY OF SMOOTH GOODNESS-OF-FIT TESTS
    KOPECKY, KJ
    PIERCE, DA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (366) : 393 - 397
  • [35] Goodness-of-fit tests for functional data
    Bugni, Federico A.
    Hall, Peter
    Horowitz, Joel L.
    Neumann, George R.
    ECONOMETRICS JOURNAL, 2009, 12 (01): : S1 - S18
  • [36] gofCopula: Goodness-of-Fit Tests for Copulae
    Okhrin, Ostap
    Trimborn, Simon
    Waltz, Martin
    R JOURNAL, 2021, 13 (01): : 467 - 498
  • [37] Stochastic integrals and goodness-of-fit tests
    J Oper Res Soc, 5 (668):
  • [38] ON ASYMPTOTIC ADMISSIBILITY OF GOODNESS-OF-FIT TESTS
    TYULYAGIN, AN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1982, 46 (03): : 535 - 576
  • [39] On the conditional distribution of goodness-of-fit tests
    O'Reilly, F
    Gracia-Medrano, L
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (03) : 541 - 549
  • [40] Goodness-of-fit tests in many dimensions
    van Hameren, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (01): : 167 - 171