Goodness-of-fit tests for the cure rate in a mixture cure model

被引:14
|
作者
Mueller, U. U. [1 ]
Van Keilegom, I. [2 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Katholieke Univ Leuven, Res Ctr Operat Res & Business Stat, Naamsestr 69, B-3000 Leuven, Belgium
基金
欧洲研究理事会;
关键词
Beran estimator; Bootstrap; Censoring; Cure fraction; Kaplan-Meier estimator; Kernel estimator; Logistic model; SEMIPARAMETRIC MODELS; REGRESSION; BOOTSTRAP;
D O I
10.1093/biomet/asy058
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider models for time-to-event data that allow that an event, e.g., a relapse of a disease, never occurs for a certain percentage of the population, called the cure rate. We suppose that these data are subject to random right censoring and we model the data using a mixture cure model, in which the survival function of the uncured subjects is left unspecified. The aim is to test whether the cure rate , as a function of the covariates, satisfies a certain parametric model. To do so, we propose a test statistic that is inspired by a goodness-of-fit test for a regression function due to Hardle & Mammen (1993). We show that the statistic is asymptotically normally distributed under the null hypothesis, that the model is correctly specified, and under local alternatives. A bootstrap procedure is proposed to implement the test. The good performance of the approach is confirmed with simulations. For illustration we apply the test to data on the times between first and second births.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 50 条
  • [41] GOODNESS-OF-FIT TESTS FOR CORRELATED DATA
    GASSER, T
    BIOMETRIKA, 1975, 62 (03) : 563 - 570
  • [42] Maximum correlations and tests of goodness-of-fit
    Grané, A
    Fortiana, J
    DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, 2002, : 113 - 123
  • [43] Goodness-of-fit tests for categorical data
    Bellocco, Rino
    Algeri, Sara
    STATA JOURNAL, 2013, 13 (02): : 356 - 365
  • [44] GOODNESS-OF-FIT TESTS FOR GROUPED DATA
    MAAG, UR
    STREIT, F
    DROUILLY, PA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (342) : 462 - 465
  • [45] Tests for the goodness-of-fit of the Laplace distribution
    Chen, Colin
    Communications in Statistics Part B: Simulation and Computation, 2002, 31 (01): : 159 - 174
  • [46] On Thresholds for Robust Goodness-of-Fit Tests
    Unnikrishnan, Jayakrishnan
    Meyn, Sean
    Veeravalli, Venugopal V.
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [47] Goodness-of-fit tests for the Cauchy distribution
    Bora H. Onen
    Dennis C. Dietz
    Vincent C. Yen
    Albert H. Moore
    Computational Statistics, 2001, 16 : 97 - 107
  • [48] Goodness-of-fit tests for the hyperbolic distribution
    Puig, P
    Stephens, MA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (02): : 309 - 320
  • [49] Goodness-of-Fit tests for dependent data
    Ignaccolo, R
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 19 - 38
  • [50] BASUS LEMMA AND GOODNESS-OF-FIT TESTS
    WELLS, MT
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1989, 18 (02) : 711 - 717