One method for probabilistic prediction of the material composition of deep crustal horizons using the geophysical data

被引:1
|
作者
Lelyaev, P. A. [1 ]
机构
[1] Russian Acad Sci, Schmidt Inst Phys Earth, Moscow 123995, Russia
关键词
algorithm; Earth's crust; seismic velocities; density;
D O I
10.1134/S1069351311080039
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Prediction of the material composition of deep crustal horizons in the Earth from the geophysical data requires an algorithm to classify the rocks according to their petrophysical properties. In the present work, we propose a classification algorithm that is based on the membership function and describe the computer program, which is based on this algorithm and intended for visualization of the most typical crystalline rocks of the Voronezh massif.
引用
收藏
页码:1083 / 1085
页数:3
相关论文
共 50 条
  • [31] Data-Driven Prediction of Experimental Hydrodynamic Data of the Manta Ray Robot Using Deep Learning Method
    Bai, Jingyi
    Huang, Qiaogao
    Pan, Guang
    He, Junjie
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (09)
  • [32] New Crustal Framework in the Amazon Craton Based on Geophysical Data: Evidences of Deep East-West Trending Suture Zones
    Carneiro, Cleyton de C.
    Juliani, Caetano
    Carreiro-Araujo, Saulo A.
    Monteiro, Lena Virginia S.
    Crosta, Alvaro P.
    Fernandes, Carlos Marcello D.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (01) : 20 - 24
  • [33] Inversion of geophysical potential field data using the finite element method
    Lamichhane, Bishnu P.
    Gross, Lutz
    INVERSE PROBLEMS, 2017, 33 (12)
  • [34] An Accurate Missing Data Prediction Method using LSTM based Deep Learning for Health care
    Verma, Hemant
    Kumar, Sudhir
    ICDCN '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, 2019, : 371 - 376
  • [35] DeepGP: An Integrated Deep Learning Method for Endocrine Disease Gene Prediction Using Omics Data
    Zhang, Ningyi
    Wang, Haoyan
    Xu, Chen
    Zhang, Liyuan
    Zang, Tianyi
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [36] Probabilistic Flood Prediction in the Upper Huaihe Catchment Using TIGGE Data
    Zhao Linna
    Qi Dan
    Tian Fuyou
    Wu Hao
    Di Jingyue
    Wang Zhi
    Li Aihua
    ACTA METEOROLOGICA SINICA, 2012, 26 (01): : 62 - 71
  • [37] Probabilistic Prediction of Chaotic Time Series Using Similarity of Attractors and LOOCV Predictable Horizons for Obtaining Plausible Predictions
    Kurogi, Shuichi
    Toidani, Mitsuki
    Shigematsu, Ryosuke
    Matsuo, Kazuya
    NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 72 - 81
  • [38] Sensitivity analysis of probabilistic occupancy prediction model using big data
    Salimi, Shide
    Hammad, Amin
    BUILDING AND ENVIRONMENT, 2020, 172
  • [39] Probabilistic Prediction of Pedestrian Crossing Intention Using Roadside LiDAR Data
    Zhao, Junxuan
    Li, Yinfeng
    Xu, Hao
    Liu, Hongchao
    IEEE ACCESS, 2019, 7 : 93781 - 93790
  • [40] Probabilistic Flood Prediction in the Upper Huaihe Catchment Using TIGGE Data
    赵琳娜
    齐丹
    田付友
    吴昊
    狄靖月
    王志
    李爱华
    Journal of Meteorological Research, 2012, (01) : 62 - 71