One method for probabilistic prediction of the material composition of deep crustal horizons using the geophysical data

被引:1
|
作者
Lelyaev, P. A. [1 ]
机构
[1] Russian Acad Sci, Schmidt Inst Phys Earth, Moscow 123995, Russia
关键词
algorithm; Earth's crust; seismic velocities; density;
D O I
10.1134/S1069351311080039
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Prediction of the material composition of deep crustal horizons in the Earth from the geophysical data requires an algorithm to classify the rocks according to their petrophysical properties. In the present work, we propose a classification algorithm that is based on the membership function and describe the computer program, which is based on this algorithm and intended for visualization of the most typical crystalline rocks of the Voronezh massif.
引用
收藏
页码:1083 / 1085
页数:3
相关论文
共 50 条
  • [11] PREDICTION OF COMPOSITION OF GAS FROM DEEP HORIZONS OF SOUTHEAST OF PRE-CASPIAN TROUGH
    VORONOV, AN
    PRASOLOV, EM
    DOKLADY AKADEMII NAUK SSSR, 1977, 232 (03): : 674 - 675
  • [12] Introduction to Geophysical Exploration Data Denoising using Deep Learning
    Caesary, Desy
    Cho, AHyun
    Yu, Huieun
    Joung, Inseok
    Song, Seo Young
    Choi, Sung Oh
    Kim, Bitnarae
    Nam, Myung Jin
    GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2020, 23 (03): : 117 - 130
  • [13] GEOLOGICAL AND STRUCTURAL PECULIARITIES OF DEEP HORIZONS OF THE MANEVICHI BLOCK OF THE PRIPYAT RAMPART (FROM GEOLOGICAL AND GEOPHYSICAL-DATA)
    SAVCHENKO, NA
    OMELCHENKO, VD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1984, (07): : 16 - 18
  • [14] Forest Fire Prediction with Imbalanced Data Using a Deep Neural Network Method
    Lai, Can
    Zeng, Shucai
    Guo, Wei
    Liu, Xiaodong
    Li, Yongquan
    Liao, Boyong
    FORESTS, 2022, 13 (07):
  • [15] Probabilistic fatigue life prediction using AFGROW and accounting for material variability
    Grell, William A.
    Laz, Peter J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (07) : 1042 - 1049
  • [16] Probabilistic Fatigue Life Prediction of Dissimilar Material Weld Using Accelerated Life Method and Neural Network Approach
    Ahmad, Hafiz Waqar
    Hwang, Jeong Ho
    Javed, Kamran
    Chaudry, Umer Masood
    Bae, Dong Ho
    COMPUTATION, 2019, 7 (01):
  • [17] Prediction of the composition of urinary stones using deep learning
    Kim, Ui Seok
    Kwon, Hyo Sang
    Yang, Wonjong
    Lee, Wonchul
    Choi, Changil
    Kim, Jong Keun
    Lee, Seong Ho
    Rim, Dohyoung
    Han, Jun Hyun
    INVESTIGATIVE AND CLINICAL UROLOGY, 2022, 63 (04) : 441 - 447
  • [18] Probabilistic geophysical inversion of complex resistivity measurements using the Hamiltonian Monte Carlo method
    Hase, Joost
    Wagner, Florian M.
    Weigand, Maximilian
    Kemna, Andreas
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 240 (01) : 349 - 361
  • [19] Deep neural network battery life and voltage prediction by using data of one cycle only
    Hsu, Chia-Wei
    Xiong, Rui
    Chen, Nan-Yow
    Li, Ju
    Tsou, Nien-Ti
    APPLIED ENERGY, 2022, 306
  • [20] NEW EQUIPMENT FOR THE INVESTIGATION OF DEEP CRUSTAL STRUCTURES USING THE RESISTIVITY METHOD
    GREEN, R
    LUDBEY, FC
    MARINO
    GEOEXPLORATION, 1985, 23 (02): : 207 - 216