One method for probabilistic prediction of the material composition of deep crustal horizons using the geophysical data

被引:1
|
作者
Lelyaev, P. A. [1 ]
机构
[1] Russian Acad Sci, Schmidt Inst Phys Earth, Moscow 123995, Russia
关键词
algorithm; Earth's crust; seismic velocities; density;
D O I
10.1134/S1069351311080039
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Prediction of the material composition of deep crustal horizons in the Earth from the geophysical data requires an algorithm to classify the rocks according to their petrophysical properties. In the present work, we propose a classification algorithm that is based on the membership function and describe the computer program, which is based on this algorithm and intended for visualization of the most typical crystalline rocks of the Voronezh massif.
引用
收藏
页码:1083 / 1085
页数:3
相关论文
共 50 条
  • [21] Probabilistic Maritime Trajectory Prediction in Complex Scenarios Using Deep Learning
    Sorensen, Kristian Aalling
    Heiselberg, Peder
    Heiselberg, Henning
    SENSORS, 2022, 22 (05)
  • [22] A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data
    Kim, Jungyoon
    Lim, Jihye
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (10)
  • [23] Probabilistic spatial prediction of categorical data using elliptical copulas
    Xiang Huang
    Zhizhong Wang
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 1631 - 1644
  • [24] Probabilistic spatial prediction of categorical data using elliptical copulas
    Huang, Xiang
    Wang, Zhizhong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (06) : 1631 - 1644
  • [25] Prediction of reservoirs using multi-component seismic data and the deep learning method
    Fu Chao
    Lin NianTian
    Zhang Dong
    Wen Bo
    Wei QianQian
    Zhang Kai
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 61 (01): : 293 - 303
  • [26] Deep Learning for the Analysis of Solar Radiation Prediction with Different Time Horizons and Data Acquisition Frequencies
    Travieso-Gonzalez, Carlos M.
    Pinan-Roescher, Alejandro
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 638 - 653
  • [27] Probabilistic evaluation of seismic responses using deep learning method
    Kim, Taeyong
    Song, Junho
    Kwon, Oh-Sung
    STRUCTURAL SAFETY, 2020, 84
  • [28] Geophysical Study of Crustal Deformation Using Gravity Data: Muzaffarabad and Adjoining Regions in Azad Jammu and Kashmir
    Zulqranan, Arooj
    Sprlak, Michal
    Khan, Muhammad Rustam
    Hameed, Fahad
    PURE AND APPLIED GEOPHYSICS, 2025,
  • [29] Site classification and estimation of surface level seismic hazard using geophysical data and probabilistic approach
    Anbazhagan, P.
    Sitharam, T. G.
    Vipin, K. S.
    JOURNAL OF APPLIED GEOPHYSICS, 2009, 68 (02) : 219 - 230
  • [30] Probabilistic Geotechnical Site Characterization from Geophysical Measurements Using Model-Data Fusion
    Parida, Siddharth S.
    Sett, Kallol
    Singla, Puneet
    GEOTECHNICAL EARTHQUAKE ENGINEERING AND SOIL DYNAMICS V: SLOPE STABILITY AND LANDSLIDES, LABORATORY TESTING, AND IN SITU TESTING, 2018, (293): : 489 - 498