Some Estimates for Virtual Element Methods

被引:129
|
作者
Brenner, Susanne C. [1 ,2 ]
Guan, Qingguang [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Virtual Elements; Polygonal/Polyhedral Meshes; Poisson Problem; 2ND-ORDER ELLIPTIC PROBLEMS; LINEAR ELASTICITY PROBLEMS; POLYGONAL MESHES; SOBOLEV SPACES;
D O I
10.1515/cmam-2017-0008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present novel techniques for obtaining the basic estimates of virtual element methods in terms of the shape regularity of polygonal/polyhedral meshes. We also derive new error estimates for the Poisson problem in two and three dimensions.
引用
收藏
页码:553 / 574
页数:22
相关论文
共 50 条
  • [21] SOME NEW L-INFINITY-ERROR ESTIMATES FOR MIXED FINITE-ELEMENT METHODS
    KWON, Y
    MILNER, FA
    MATEMATICA APLICADA E COMPUTACIONAL, 1986, 5 (03): : 249 - 264
  • [22] Interior estimates for nonconforming finite element methods
    Liu, XB
    NUMERISCHE MATHEMATIK, 1996, 74 (01) : 49 - 67
  • [23] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    Journal of Scientific Computing, 2020, 84
  • [24] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [25] Superconvergent gradient recovery for virtual element methods
    Guo, Hailong
    Xie, Cong
    Zhao, Ren
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (11): : 2007 - 2031
  • [26] BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS
    Brezzi, F.
    Falk, Richard S.
    Marini, L. Donatella
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04): : 1227 - 1240
  • [27] A guide to the finite and virtual element methods for elasticity
    Berbatov, K.
    Lazarov, B. S.
    Jivkov, A. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 351 - 395
  • [28] Recent results and perspectives for virtual element methods
    da Veiga, L. Beirao
    Bellomo, N.
    Brezzi, F.
    Marini, L. D.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (14): : 2819 - 2824
  • [29] Adaptive virtual element methods with equilibrated fluxes
    Dassi, F.
    Gedicke, J.
    Mascotto, L.
    APPLIED NUMERICAL MATHEMATICS, 2022, 173 : 249 - 278
  • [30] Virtual Element Methods for plate bending problems
    Brezzi, Franco
    Marini, L. Donatella
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 455 - 462