BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS

被引:230
|
作者
Brezzi, F. [1 ,2 ,3 ]
Falk, Richard S. [4 ]
Marini, L. Donatella [2 ,5 ]
机构
[1] IUSS Pavia, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] KAU, Jeddah, Saudi Arabia
[4] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[5] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Mixed formulations; virtual elements; polygonal meshes; polyhedral meshes; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; CONVERGENCE ANALYSIS;
D O I
10.1051/m2an/2013138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n - 1) - Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).
引用
收藏
页码:1227 / 1240
页数:14
相关论文
共 50 条
  • [1] BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS
    da Veiga, L. Beirao
    Brezzi, F.
    Cangiani, A.
    Manzini, G.
    Marini, L. D.
    Russo, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01): : 199 - 214
  • [2] Mixed virtual element methods for elastodynamics with weak symmetry
    Zhang, Baiju
    Yang, Yan
    Feng, Minfu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 49 - 71
  • [3] Mixed virtual element methods for optimal control of Darcy flow
    Tushar, Jai
    Kumar, Anil
    Kumar, Sarvesh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 140 : 134 - 153
  • [4] Nodal auxiliary space preconditioners for mixed virtual element methods
    Boon, Wietse M.
    Nilsson, Erik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 363 - 387
  • [5] Convergence analysis of expanded mixed virtual element methods for nonlocal problems
    Adak, Dibyendu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 3246 - 3270
  • [6] Mixed virtual element methods for the poro-elastodynamics model on polygonal grids
    Chen, Yanli
    Liu, Xin
    Zhang, Wenhui
    Nie, Yufeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 431 - 448
  • [7] Residual-based a posteriori error estimation for mixed virtual element methods
    Munar, Mauricio
    Cangiani, Andrea
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 166 : 182 - 197
  • [8] PRINCIPLES OF BOUNDARY ELEMENT METHODS
    COSTABEL, M
    COMPUTER PHYSICS REPORTS, 1987, 6 (1-6): : 243 - 274
  • [9] VIRTUAL ELEMENT RETRIEVAL IN MIXED REALITY
    Radanovic, M.
    Khoshelham, K.
    Fraser, C.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 5-4 : 227 - 234
  • [10] MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Brezzi, Franco
    Marini, Luisa Donatella
    Russo, Alessandro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 727 - 747