MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES

被引:145
|
作者
da Veiga, Lourenco Beirao [1 ,2 ]
Brezzi, Franco [2 ]
Marini, Luisa Donatella [2 ,3 ]
Russo, Alessandro [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 57, I-20125 Milan, Italy
[2] CNR, IMATI, Via Ferrata 1, I-27100 Pavia, Italy
[3] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
关键词
Mixed Virtual Element Methods; elliptic problems; FINITE-DIFFERENCE METHOD; MIMETIC DISCRETIZATIONS; DISCONTINUOUS GALERKIN; DIFFUSION-PROBLEMS; ARBITRARY-ORDER; STOKES PROBLEM; ERROR; CONSTRUCTION; FORMULATION; SCHEMES;
D O I
10.1051/m2an/2015067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we introduce a Virtual Element Method (VEM) for the approximate solution of general linear second order elliptic problems in mixed form, allowing for variable coefficients. We derive a theoretical convergence analysis of the method and develop a set of numerical tests on a benchmark problem with known solution.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条