MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES

被引:161
|
作者
da Veiga, Lourenco Beirao [1 ,2 ]
Brezzi, Franco [2 ]
Marini, Luisa Donatella [2 ,3 ]
Russo, Alessandro [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 57, I-20125 Milan, Italy
[2] CNR, IMATI, Via Ferrata 1, I-27100 Pavia, Italy
[3] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
关键词
Mixed Virtual Element Methods; elliptic problems; FINITE-DIFFERENCE METHOD; MIMETIC DISCRETIZATIONS; DISCONTINUOUS GALERKIN; DIFFUSION-PROBLEMS; ARBITRARY-ORDER; STOKES PROBLEM; ERROR; CONSTRUCTION; FORMULATION; SCHEMES;
D O I
10.1051/m2an/2015067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we introduce a Virtual Element Method (VEM) for the approximate solution of general linear second order elliptic problems in mixed form, allowing for variable coefficients. We derive a theoretical convergence analysis of the method and develop a set of numerical tests on a benchmark problem with known solution.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [21] Virtual element method for second-order elliptic eigenvalue problems
    Gardini, Francesca
    Vacca, Giuseppe
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 2026 - 2054
  • [22] Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes
    Mu, Lin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 361 : 413 - 425
  • [23] Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes
    da Veiga, Lourenco Beirao
    Lipnikov, Konstantin
    Manzini, Gianmarco
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 69 - +
  • [24] Virtual element method for a nonlocal elliptic problem of Kirchhoff type on polygonal meshes
    Adak, D.
    Natarajan, S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2856 - 2871
  • [25] Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods
    Giani, Stefano
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 267 : 618 - 631
  • [26] Method of nonconforming mixed finite element for second order elliptic problems
    Luo, ZD
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (05) : 449 - 456
  • [27] Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes
    Arrutselvi, M.
    Adak, D.
    Natarajan, E.
    Roy, S.
    Natarajan, S.
    CALCOLO, 2022, 59 (02)
  • [28] Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes
    M. Arrutselvi
    D. Adak
    E. Natarajan
    S. Roy
    S. Natarajan
    Calcolo, 2022, 59
  • [29] On continuous, discontinuous, mixed, and primal hybrid finite element methods for second-order elliptic problems
    Devloo, P. R. B.
    Faria, C. O.
    Farias, A. M.
    Gomes, S. M.
    Loula, A. F. D.
    Malta, S. M. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 115 (09) : 1083 - 1107
  • [30] Virtual element methods for weakly damped wave equations on polygonal meshes
    Pradhan, Gouranga
    Dutta, Jogen
    Deka, Bhupen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):