BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS

被引:230
|
作者
Brezzi, F. [1 ,2 ,3 ]
Falk, Richard S. [4 ]
Marini, L. Donatella [2 ,5 ]
机构
[1] IUSS Pavia, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] KAU, Jeddah, Saudi Arabia
[4] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[5] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Mixed formulations; virtual elements; polygonal meshes; polyhedral meshes; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; CONVERGENCE ANALYSIS;
D O I
10.1051/m2an/2013138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n - 1) - Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).
引用
收藏
页码:1227 / 1240
页数:14
相关论文
共 50 条
  • [31] Superconvergent gradient recovery for virtual element methods
    Guo, Hailong
    Xie, Cong
    Zhao, Ren
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (11): : 2007 - 2031
  • [32] A guide to the finite and virtual element methods for elasticity
    Berbatov, K.
    Lazarov, B. S.
    Jivkov, A. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 351 - 395
  • [33] Recent results and perspectives for virtual element methods
    da Veiga, L. Beirao
    Bellomo, N.
    Brezzi, F.
    Marini, L. D.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (14): : 2819 - 2824
  • [34] Adaptive virtual element methods with equilibrated fluxes
    Dassi, F.
    Gedicke, J.
    Mascotto, L.
    APPLIED NUMERICAL MATHEMATICS, 2022, 173 : 249 - 278
  • [35] Virtual Element Methods for plate bending problems
    Brezzi, Franco
    Marini, L. Donatella
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 455 - 462
  • [36] Some error analysis on virtual element methods
    Chen, Long
    Huang, Jianguo
    CALCOLO, 2018, 55 (01)
  • [37] Some error analysis on virtual element methods
    Long Chen
    Jianguo Huang
    Calcolo, 2018, 55
  • [38] Conforming Virtual Element Methods for Sobolev Equations
    Yang Xu
    Zhenguo Zhou
    Jingjun Zhao
    Journal of Scientific Computing, 2022, 93
  • [39] Conforming Virtual Element Methods for Sobolev Equations
    Xu, Yang
    Zhou, Zhenguo
    Zhao, Jingjun
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [40] VIRTUAL ELEMENT METHODS WITHOUT EXTRINSIC STABILIZATION
    Chen, Chunyu
    Huang, Xuehai
    Wei, Huayi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (01) : 567 - 591