A hierarchical approach in distributed evolutionary algorithms for multiobjective optimization

被引:6
|
作者
Zaharie, Daniela [1 ]
Petcu, Dana [1 ]
Panica, Silviu [1 ]
机构
[1] W Univ Timisoara, Dept Comp Sci, Timisoara 300223, Romania
来源
关键词
D O I
10.1007/978-3-540-78827-0_59
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a hierarchical and easy configurable framework for the implementation of distributed evolutionary algorithms for multiobjective optimization problems. The proposed approach is based on a layered structure corresponding to different execution environments like single computers, computing clusters and grid infrastructures. Two case studies, one based on a classical test suite in multiobjective optimization and one based on a data mining task, are presented and the results obtained both on a local cluster of computers and in a grid environment illustrates the characteristics of the proposed implementation framework.
引用
收藏
页码:516 / 523
页数:8
相关论文
共 50 条
  • [41] An Evolutionary Multiobjective Optimization Algorithms Framework with Algorithm Adaptive Selection
    Wang, Dan
    Liu, Hai-lin
    Gu, Fangqing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1336 - 1341
  • [42] Multiobjective Optimization Using Evolutionary Algorithms in Agile Teams Allocation
    Brandao Caldeira, Junea Eliza
    Imaeda Yoshioka, Sergio Roberto
    de Oliveira Rodrigues, Bruno Rafael
    Parreiras, Fernando Silva
    SBQS: PROCEEDINGS OF THE 18TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, 2019, : 89 - 98
  • [43] Grid enabled, hierarchical distributed metamodel-assisted evolutionary algorithms for aerodynamic shape optimization
    Liakopoulos, P. I. K.
    Kampolis, I. C.
    Giannakoglou, K. C.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2008, 24 (07): : 701 - 708
  • [44] Distributed evolutionary algorithms in optimization of nonlinear solids
    Kus, W
    Burczynski, T
    IUTAM SYMPOSIUM ON EVOLUTIONARY METHODS IN MECHANICS, 2004, 117 : 229 - 239
  • [45] MIJ2K Optimization using evolutionary multiobjective optimization algorithms
    Luis Bustamante, Alvaro
    Molina Lopez, Jose M.
    Patricio, Miguel A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 10999 - 11010
  • [46] A New Approach to Target Region Based Multiobjective Evolutionary Algorithms
    Wang, Yali
    Li, Longmei
    Yang, Kaifeng
    Emmerich, Michael T. M.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1757 - 1764
  • [47] Evacuation planning using multiobjective evolutionary optimization approach
    Saadatseresht, Mohammad
    Mansourian, Ali
    Taleai, Mohammad
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 198 (01) : 305 - 314
  • [48] A Systems Approach to Evolutionary Multiobjective Structural Optimization and Beyond
    Jin, Yaochu
    Sendhoff, Bernhard
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (03) : 62 - 76
  • [49] A Constrained Decomposition Approach With Grids for Evolutionary Multiobjective Optimization
    Cai, Xinye
    Mei, Zhiwei
    Fan, Zhun
    Zhang, Qingfu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (04) : 564 - 577
  • [50] An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization
    Zhang, Xingyi
    Tian, Ye
    Cheng, Ran
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (02) : 201 - 213