MIJ2K Optimization using evolutionary multiobjective optimization algorithms

被引:2
|
作者
Luis Bustamante, Alvaro [1 ]
Molina Lopez, Jose M. [1 ]
Patricio, Miguel A. [1 ]
机构
[1] Univ Carlos III Madrid, Madrid 28270, Spain
关键词
Multi-objective; Optimization; Video; Encoder; VIDEO; QOS;
D O I
10.1016/j.eswa.2011.02.143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with the multiobjective definition of video compression and its optimization. The optimization will be done using NSGA-II, a well-tested and highly accurate algorithm with a high convergence speed developed for solving multiobjective problems. Video compression is defined as a problem including two competing objectives. We try to find a set of optimal, so-called Pareto-optimal solutions, instead of a single optimal solution. The two competing objectives are quality and compression ratio maximization. The optimization will be achieved using a new patent pending codec, called MIJ2K, also outlined in this paper. Video will be compressed with the MIJ2K codec applied to some classical videos used for performance measurement, selected from the Xiph.org Foundation repository. The result of the optimization will be a set of near-optimal encoder parameters. We also present the convergence of NSGA-II with different encoder parameters and discuss the suitability of MOEAs as opposed to classical search-based techniques in this field. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10999 / 11010
页数:12
相关论文
共 50 条
  • [1] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    [J]. Journal of Heuristics, 2000, 6 : 347 - 360
  • [2] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    [J]. JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360
  • [3] Multiobjective optimization using adaptive fuzzy/evolutionary algorithms
    Lee, MA
    Esbensen, H
    [J]. COMPUTERS AND THEIR APPLICATIONS - PROCEEDINGS OF THE ISCA 11TH INTERNATIONAL CONFERENCE, 1996, : 67 - 70
  • [4] An Overview of Evolutionary Algorithms in Multiobjective Optimization
    Fonseca, Carlos M.
    Fleming, Peter J.
    [J]. EVOLUTIONARY COMPUTATION, 1995, 3 (01) : 1 - 16
  • [5] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [6] Multiobjective Optimization of an Induction Heating Device Using Evolutionary Algorithms
    Petrescu, Camelia
    Ferariu, Lavinia
    [J]. 2014 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE), 2014, : 241 - 246
  • [7] Multiobjective optimization using evolutionary algorithms - A comparative case study
    Zitzler, E
    Thiele, L
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN V, 1998, 1498 : 292 - 301
  • [8] Multiobjective Optimization Using Evolutionary Algorithms in Agile Teams Allocation
    Brandao Caldeira, Junea Eliza
    Imaeda Yoshioka, Sergio Roberto
    de Oliveira Rodrigues, Bruno Rafael
    Parreiras, Fernando Silva
    [J]. SBQS: PROCEEDINGS OF THE 18TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, 2019, : 89 - 98
  • [9] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [10] Multiobjective Evolutionary Algorithms for Intradomain Routing Optimization
    Rocha, Miguel
    Sa, Tiago
    Sousa, Pedro
    Cortez, Paulo
    Rio, Miguel
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2272 - 2279