An Overview of Evolutionary Algorithms in Multiobjective Optimization

被引:1474
|
作者
Fonseca, Carlos M. [1 ]
Fleming, Peter J. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
evolutionary algorithms; multiobjective optimization; fitness assignment; search strategies;
D O I
10.1162/evco.1995.3.1.1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performance measures with the inherently scalar way in which EAs reward individual performance, that is, number of offspring. In this review, current multiobjective evolutionary approaches are discussed, ranging from the conventional analytical aggregation of the different objectives into a single function to a number of population-based approaches and the more recent ranking schemes based on the definition of Pareto optimality. The sensitivity of different methods to objective scaling and/or possible concavities in the trade-off surface is considered, and related to the (static) fitness landscapes such methods induce on the search space. From the discussion, directions for future research in multiobjective fitness assignment and search strategies are identified, including the incorporation of decision making in the selection procedure, fitness sharing, and adaptive representations.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [2] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    [J]. Journal of Heuristics, 2000, 6 : 347 - 360
  • [3] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [4] Multiobjective Evolutionary Algorithms for Intradomain Routing Optimization
    Rocha, Miguel
    Sa, Tiago
    Sousa, Pedro
    Cortez, Paulo
    Rio, Miguel
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2272 - 2279
  • [5] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    [J]. JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360
  • [6] Constructing Evolutionary Algorithms for Bilevel Multiobjective Optimization
    Ruuska, Sauli
    Miettinen, Kaisa
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [7] An Overview of Evolutionary Algorithms for Parameter Optimization
    Baeck, Thomas
    Schwefel, Hans-Paul
    [J]. EVOLUTIONARY COMPUTATION, 1993, 1 (01) : 1 - 23
  • [8] A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Li, Jianqiang
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1941 - 1961
  • [9] A hierarchical approach in distributed evolutionary algorithms for multiobjective optimization
    Zaharie, Daniela
    Petcu, Dana
    Panica, Silviu
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 516 - 523
  • [10] Multiobjective evolutionary algorithms for complex portfolio optimization problems
    Anagnostopoulos K.P.
    Mamanis G.
    [J]. Computational Management Science, 2011, 8 (3) : 259 - 279