A hierarchical approach in distributed evolutionary algorithms for multiobjective optimization

被引:6
|
作者
Zaharie, Daniela [1 ]
Petcu, Dana [1 ]
Panica, Silviu [1 ]
机构
[1] W Univ Timisoara, Dept Comp Sci, Timisoara 300223, Romania
来源
关键词
D O I
10.1007/978-3-540-78827-0_59
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a hierarchical and easy configurable framework for the implementation of distributed evolutionary algorithms for multiobjective optimization problems. The proposed approach is based on a layered structure corresponding to different execution environments like single computers, computing clusters and grid infrastructures. Two case studies, one based on a classical test suite in multiobjective optimization and one based on a data mining task, are presented and the results obtained both on a local cluster of computers and in a grid environment illustrates the characteristics of the proposed implementation framework.
引用
收藏
页码:516 / 523
页数:8
相关论文
共 50 条
  • [21] Evolutionary algorithms for multiobjective and multimodal optimization of diagnostic schemes
    de Toro, F
    Ros, E
    Mota, S
    Ortega, J
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (02) : 178 - 189
  • [22] An evolutionary algorithm with spatially distributed surrogates for multiobjective optimization
    Isaacs, Amitay
    Ray, Tapabrata
    Smith, Warren
    [J]. PROGRESS IN ARTIFICIAL LIFE, PROCEEDINGS, 2007, 4828 : 257 - 268
  • [23] A Jumping Gene Evolutionary Approach for Multiobjective Optimization
    Tang, Wallace K. S.
    Yeung, Chris S. H.
    Man, K. F.
    [J]. ICT INNOVATIONS 2011, 2011, 150 : 1 - 14
  • [24] A realistic approach to evolutionary multiobjective portfolio optimization
    Chiam, S. C.
    Al Mamun, A.
    Low, Y. L.
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 204 - 211
  • [25] HC-MOEA: A hierarchical clustering approach for increasing the solution's diversity in multiobjective evolutionary algorithms
    Tahernezhad, Kamyab
    Lari, Kimia Bazargan
    Hamzeh, Ali
    Hashemi, Sattar
    [J]. INTELLIGENT DATA ANALYSIS, 2015, 19 (01) : 187 - 208
  • [26] Pareto-based continuous evolutionary algorithms for multiobjective optimization
    Shim, MB
    Suh, MW
    Furukawa, T
    Yagawa, G
    Yoshimura, S
    [J]. ENGINEERING COMPUTATIONS, 2002, 19 (1-2) : 22 - 48
  • [27] Multiobjective Optimization of an Induction Heating Device Using Evolutionary Algorithms
    Petrescu, Camelia
    Ferariu, Lavinia
    [J]. 2014 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE), 2014, : 241 - 246
  • [28] AN ANALYSIS OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR OPTIMIZATION PROBLEMS WITH TIME CONSTRAINTS
    Camara, M.
    de Toro, F.
    Ortega, J.
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (09) : 851 - 879
  • [29] Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms
    Ishibuchi, Hisao
    Doi, Tsutomu
    Nojima, Yusuke
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 493 - 502
  • [30] A Cumulative Evidential Stopping Criterion for Multiobjective Optimization Evolutionary Algorithms
    Marti, Luis
    Garcia, Jesus
    Berlanga, Antonio
    Molina, Jose M.
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 911 - 911